

ETSI TR 103 823 V1.1.1 (2021-09)

CYBER;
Quantum-Safe Public-Key Encryption and Key Encapsulation

TECHNICAL REPORT

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 2

Reference
DTR/CYBER-QSC-0017

Keywords
algorithm, cybersecurity

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any

existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or

other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness

for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not

limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2021.

All rights reserved.

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 3

Contents

Intellectual Property Rights .. 7

Foreword ... 7

Modal verbs terminology .. 7

1 Scope .. 8

2 References .. 8

2.1 Normative references ... 8

2.2 Informative references .. 8

3 Definition of terms, symbols and abbreviations ... 9

3.1 Terms .. 9

3.2 Symbols .. 10

3.3 Abbreviations ... 10

4 Introduction .. 11

5 Background .. 12

5.1 Terminology ... 12

5.2 Families of post-quantum algorithms ... 12

5.3 Security categories ... 13

5.4 Security properties .. 13

5.5 Finalists and alternate candidates at a glance ... 14

6 Finalists .. 15

6.1 Classic McEliece .. 15

6.1.1 Overview .. 15

6.1.2 Parameters... 15

6.1.3 Auxiliary primitives .. 15

6.1.4 Public-key encryption scheme .. 16

6.1.4.1 McEliece.PKE.KeyGen ... 16

6.1.4.2 McEliece.PKE.Enc .. 16

6.1.4.3 McEliece.PKE.Dec ... 16

6.1.5 Key encapsulation mechanism .. 17

6.1.5.1 McEliece.KEM.KeyGen ... 17

6.1.5.2 McEliece.KEM.Enc .. 17

6.1.5.3 McEliece.KEM.Dec .. 17

6.1.6 Parameter sets ... 18

6.1.7 Security ... 18

6.1.8 Performance .. 18

6.2 KYBER .. 19

6.2.1 Overview .. 19

6.2.2 Parameters... 19

6.2.3 Auxiliary primitives .. 20

6.2.4 Public-key encryption scheme .. 20

6.2.4.1 KYBER.PKE.KeyGen .. 20

6.2.4.2 KYBER.PKE.Enc ... 21

6.2.4.3 KYBER.PKE.Dec ... 21

6.2.5 Key encapsulation mechanism .. 21

6.2.5.1 KYBER.KEM.KeyGen ... 21

6.2.5.2 KYBER.KEM.Enc .. 22

6.2.5.3 KYBER.KEM.Dec .. 22

6.2.6 Parameter sets ... 22

6.2.7 Security ... 23

6.2.8 Performance .. 23

6.3 NTRU ... 23

6.3.1 Overview .. 23

6.3.2 Parameters... 24

6.3.3 Auxiliary primitives .. 24

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 4

6.3.4 Public-key encryption scheme .. 24

6.3.4.1 NTRU.PKE.KeyGen ... 24

6.3.4.2 NTRU.PKE.Enc .. 25

6.3.4.3 NTRU.PKE.Dec .. 25

6.3.5 Key encapsulation mechanism .. 25

6.3.5.1 NTRU.KEM.KeyGen .. 25

6.3.5.2 NTRU.KEM.Enc ... 26

6.3.5.3 NTRU.KEM.Dec .. 26

6.3.6 Parameter sets ... 26

6.3.7 Security ... 26

6.3.8 Performance .. 27

6.4 SABER ... 27

6.4.1 Overview .. 27

6.4.2 Parameters... 27

6.4.3 Auxiliary primitives .. 28

6.4.4 Public-key encryption scheme .. 28

6.4.4.1 SABER.PKE.KeyGen ... 28

6.4.4.2 SABER.PKE.Enc .. 29

6.4.4.3 SABER.PKE.Dec .. 29

6.4.5 Key encapsulation mechanism .. 29

6.4.5.1 SABER.KEM.KeyGen .. 29

6.4.5.2 SABER.KEM.Enc ... 29

6.4.5.3 SABER.KEM.Dec .. 30

6.4.6 Parameter sets ... 30

6.4.7 Security ... 30

6.4.8 Performance .. 31

7 Alternate candidates ... 31

7.1 BIKE .. 31

7.1.1 Overview .. 31

7.1.2 Parameters... 32

7.1.3 Decoding ... 32

7.1.4 Auxiliary primitives .. 32

7.1.5 Public-key encryption scheme .. 32

7.1.5.1 BIKE.PKE.KeyGen... 32

7.1.5.2 BIKE.PKE.Enc .. 33

7.1.5.3 BIKE.PKE.Dec ... 33

7.1.6 Key encapsulation mechanism .. 33

7.1.6.1 BIKE.KEM.KeyGen ... 33

7.1.6.2 BIKE.KEM.Enc .. 34

7.1.6.3 BIKE.KEM.Dec .. 34

7.1.7 Parameter sets ... 34

7.1.8 Security ... 35

7.1.9 Performance .. 35

7.2 FrodoKEM ... 35

7.2.1 Overview .. 35

7.2.2 Parameters... 35

7.2.3 Auxiliary primitives .. 36

7.2.4 Public-key encryption scheme .. 36

7.2.4.1 Frodo.PKE.KeyGen .. 36

7.2.4.2 Frodo.PKE.Enc ... 36

7.2.4.3 Frodo.PKE.Dec ... 37

7.2.5 Key encapsulation mechanism .. 37

7.2.5.1 Frodo.KEM.KeyGen ... 37

7.2.5.2 Frodo.KEM.Enc .. 37

7.2.5.3 Frodo.KEM.Dec .. 37

7.2.6 Parameter sets ... 38

7.2.7 Security ... 38

7.2.8 Performance .. 39

7.3 HQC ... 39

7.3.1 Overview .. 39

7.3.2 Parameters... 39

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 5

7.3.3 Auxiliary error correction ... 39

7.3.4 Auxiliary primitives .. 40

7.3.5 Public-key encryption scheme .. 40

7.3.5.1 HQC.PKE.KeyGen ... 40

7.3.5.2 HQC.PKE.Enc .. 40

7.3.5.3 HQC.PKE.Dec .. 41

7.3.6 Key encapsulation mechanism .. 41

7.3.6.1 HQC.KEM.KeyGen .. 41

7.3.6.2 HQC.KEM.Enc ... 41

7.3.6.3 HQC.KEM.Dec ... 41

7.3.7 Parameter sets ... 42

7.3.8 Security ... 42

7.3.9 Performance .. 43

7.4 NTRU Prime .. 43

7.4.1 Overview .. 43

7.4.2 Parameters... 43

7.4.3 Auxiliary primitives .. 43

7.4.4 Streamlined NTRU Prime public-key encryption scheme .. 44

7.4.4.1 SNTRUP.PKE.KeyGen ... 44

7.4.4.2 SNTRUP.PKE.Enc .. 44

7.4.4.3 SNTRUP.PKE.Dec ... 45

7.4.5 Streamlined NTRU Prime key encapsulation mechanism .. 45

7.4.5.1 SNTRUP.KEM.KeyGen ... 45

7.4.5.2 SNTRUP.KEM.Enc .. 45

7.4.5.3 SNTRUP.KEM.Dec .. 45

7.4.6 NTRU LPRime public-key encryption scheme .. 46

7.4.6.1 NTRULPR.PKE.KeyGen .. 46

7.4.6.2 NTRULPR.PKE.Enc ... 46

7.4.6.3 NTRULPR.PKE.Dec... 46

7.4.7 NTRU LPRime key encapsulation mechanism... 47

7.4.7.1 NTRULPR.KEM.KeyGen .. 47

7.4.7.2 NTRULPR.KEM.Enc ... 47

7.4.7.3 NTRULPR.KEM.Dec ... 47

7.4.8 Parameter sets ... 47

7.4.9 Security ... 48

7.4.10 Performance .. 49

7.5 SIKE ... 49

7.5.1 Overview .. 49

7.5.2 Parameters... 50

7.5.3 Auxiliary primitives .. 50

7.5.4 Public-key encryption scheme .. 50

7.5.4.1 SIKE.PKE.KeyGen ... 50

7.5.4.2 SIKE.PKE.Enc .. 50

7.5.4.3 SIKE.PKE.Dec .. 51

7.5.5 Key encapsulation mechanism .. 51

7.5.5.1 SIKE.KEM.KeyGen .. 51

7.5.5.2 SIKE.KEM.Enc ... 51

7.5.5.3 SIKE.KEM.Dec .. 52

7.5.6 Parameter sets ... 52

7.5.7 Security ... 53

7.5.8 Performance .. 53

Annex A: Proofs of security... 54

A.1 Introduction .. 54

A.2 Security models .. 54

A.3 Computational resources .. 54

A.4 Tightness .. 54

A.5 Worst-case to average-case reductions ... 55

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 6

A.6 Random oracles .. 55

Annex B: Security properties .. 56

B.1 Introduction .. 56

B.2 Public-key encryption... 56

B.3 Key encapsulation .. 56

B.4 One-wayness .. 57

B.5 CPA to CCA transforms ... 57

Annex C: Code-based costing methodology ... 58

C.1 Introduction .. 58

C.2 Information set decoding .. 58

C.3 Asymptotic complexity .. 58

C.4 Quantum information set decoding .. 59

C.5 Costing metrics ... 59

Annex D: Lattice costing methodology ... 60

D.1 Introduction .. 60

D.2 Lattice reduction ... 60

D.3 Enumeration and sieving .. 60

D.4 Core-SVP ... 60

D.5 Alternative metrics ... 61

History .. 62

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 7

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the
ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs,
including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Intel, the Intel logo and Xeon are trademarks of Intel Corporation or its subsidiaries.

Foreword
This Technical Report (TR) has been produced by ETSI Technical Committee Cyber Security (CYBER).

Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 8

1 Scope
The present document provides technical descriptions of the Public-Key Encryption (PKE) and Key Encapsulation
Mechanisms (KEMs) submitted to the National Institute for Standards and Technology (NIST) for the third round of
their Post-Quantum Cryptography (PQC) standardization process.

2 References

2.1 Normative references
Normative references are not applicable in the present document.

2.2 Informative references
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] NIST FIPS 197: "Advanced Encryption Standard (AES)".

[i.2] NIST FIPS 180-4: "Secure Hash Standard".

[i.3] NIST FIPS 202: "SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions".

[i.4] NIST IR 8105: "Report on Post-Quantum Cryptography".

[i.5] NIST FIPS 186-4: "Digital Signature Standard (DSS)".

[i.6] NIST SP-56A: "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography".

[i.7] NIST SP-56B: "Recommendation for Pair-Wise Key Establishment Schemes Using Integer
Factorization Cryptography".

[i.8] NIST: "Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography
Standardization Process", December 2016.

NOTE: Available at https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-
proposals-final-dec-2016.pdf.

[i.9] NIST Post-Quantum Cryptography Standardization: "Round 1 Submissions".

NOTE: Available at https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

[i.10] NIST IR 8240: "Status Report on the First Round of the NIST Post-Quantum Standardization
Process".

[i.11] NIST Post-Quantum Cryptography Standardization: "Round 2 Submissions".

NOTE: Available at https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions.

[i.12] NIST IR 8309: "Status Report on the Second Round of the NIST Post-Quantum Standardization
Process".

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 9

[i.13] NIST Post-Quantum Cryptography Standardization: "Round 3 Submissions".

NOTE: Available at https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.

[i.14] ETSI TR 103 616: "CYBER; Quantum-Safe Signatures".

[i.15] E. Fujisaki and T. Okamoto: "Secure integration of asymmetric and symmetric encryption
schemes", CRYPTO, 1999.

[i.16] D. Hofheinz, K. Hövelmanns and E. Kiltz: "A modular analysis of the Fujisaki-Okamoto
transformation", TCC, 2017.

[i.17] N. Drucker, Shay Gueron and D. Kostic: "QC-MDPC decoders with several shades of gray",
PQCrypto, 2020.

[i.18] R. Canto Torres and N. Sendrier: "Analysis of information set decoding for a sub-linear error
weight", PQCrypto, 2016.

[i.19] N. Bindel, M. Hamburg, K. Hövelmanns, A. Hülsing, and E. Persichetti: "Tighter proofs of CCA
security in the quantum random oracle model", TCC, 2019.

[i.20] M.R. Albrecht, V. Gheorghiu, E.W. Postlethwaite and J.M. Schanck: "Estimating quantum
speedups for lattice sieves", Cryptology ePrint Archive, Report 2019/1161, 2019.

[i.21] E. Prange: "The use of information sets in decoding cyclic codes", IRE Transactions on
Information Theory 8.5 (1962): 5-9.

[i.22] P.J. Lee and E.F. Brickell: "An observation on the security of McEliece's public-key
cryptosystem", EUROCRYPT, 1988.

[i.23] J. Stern: "A method for finding codewords of small weight", International Colloquium on Coding
Theory and Applications. Springer, Berlin, Heidelberg, 1988.

[i.24] A. May, A. Meurer and E. Thomae: "Decoding random linear codes in O ̃(2^0.054n)",
ASIACRYPT, 2011.

[i.25] A. Becker, A. Joux, A. May and A. Meurer: "Decoding random binary linear codes in 2^(n/20):
How 1 + 1 = 0 improves information set decoding", EUROCRYPT, 2012.

[i.26] N. Sendrier: "Decoding one out of many", PQCrypto, 2011.

[i.27] D.J. Bernstein: "Grover vs. McEliece", PQCrypto, 2010.

[i.28] G. Kachigar and J.-P. Tillich: "Quantum information set decoding algorithms", PQCrypto, 2017.

[i.29] M. Naehrig and J. Renes: "Dual isogenies and their application to public-key compression for
isogeny-based cryptography", ASIACRYPT, 2019.

[i.30] G. Pereira, J. Doliskani and D. Jao: "x-only point addition formula and faster torsion basis
generation in compressed SIKE", Cryptology ePrint Archive, Report 2020/431, 2020.

3 Definition of terms, symbols and abbreviations

3.1 Terms
For the purposes of the present document, the following terms apply:

weight: number of non-zero components of a vector or the number of non-zero coefficients of a polynomial

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 10

3.2 Symbols
For the purposes of the present document, the following symbols apply:

� Bold upper-case letters denote matrices (over some ring or field)
�� The transpose of the matrix �
�� The � × � identity matrix
� Bold lower-case letters denote vectors (over some ring or field)
�� The transpose of the vector �
⟨a,b⟩ The inner product of vectors � and � (defined over some common ring)
0� The all-zero vector consisting of � entries
� ≔ � � is assigned the value of �
� = � The values of � and � are equal
� ≠ � The values of � and � are not equal
� ∥ � The concatenation of � and �
⊕ Bitwise exclusive or
⊥ Failure
⌈�⌋ The value of � when rounded to the nearest integer, with ties broken by rounding up
⌊�⌉�→� Modulus switching of � from modulus
 to modulus �
���� A cryptographic hash function
���� A cryptographic hash function
��(�) The weight of the polynomial �
� A finite field
�� A finite field modulo

ℤ The ring of integers
ℤ� The ring of integers modulo

� A ring of polynomials
�� A ring of polynomials modulo

���×� The set of � × � matrices with coefficients in ��
��� The set of 1 × � matrices with coefficients in ��
�� Centered binomial distribution of width �
� Probability distribution over ℤ

3.3 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AES Advanced Encryption Standard
BIKE Bit Flipping Key Exchange
BKZ Blockwise Korkine-Zolotarev
CCA Chosen-Ciphertext Attack
CPA Chosen-Plaintext Attack
DEM Data Encapsulation Mechanism
HQC Hamming Quasi-Cyclic
KEM Key Encapsulation Mechanism
KDF Key Derivation Function
LWE Learning With Errors
LWR Learning With Rounding
MLWE Module Learning With Errors
MLWR Module Learning With Rounding
NIST National Institute of Standards and Technology
NTT Number Theoretic Transform
OW-CPA One-Wayness against Chosen-Plaintext Attack
PKE Public-Key Encryption
PQC Post-Quantum Cryptography
PRF Pseudorandom Function
QROM Quantum Random Oracle Model
RLWR Ring Learning With Rounding
ROM Random Oracle Model

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 11

SHA Secure Hash Algorithm
SIDH Supersingular Isogeny Diffie-Hellman
SIKE Supersingular Isogeny Key Encapsulation
SVP Shortest Vector Problem
XOF Extendable Output Function

4 Introduction
The National Institute of Standards and Technology (NIST), an agency of the U.S. Department of Commerce, is
responsible for producing cryptographic standards for the protection of sensitive U.S. Federal Government information.
NIST standards, such as the Advanced Encryption Standard (AES) [i.1] and Secure Hash Algorithm (SHA) standards
[i.2] [i.3], are used globally in many different protocols and products.

In April 2016 NIST announced [i.4] their intention to augment their existing portfolio of public-key cryptography
standards [i.5], [i.6], [i.7] by developing new standards for post-quantum cryptography. In December 2016 they initiated
a competition-like process with a call for proposals [i.8] for digital signatures, Public-Key Encryption (PKE) schemes,
and Key Encapsulation Mechanisms (KEMs), that will remain secure even in the presence of a cryptographically
relevant quantum computer. The goal of the process is to perform several rounds of public evaluation over a three to
five-year period, and select one or more acceptable algorithms for standardization based on that evaluation.

NIST's deadline for submissions was November 2017. They received 69 candidates that met the minimum acceptance
criteria and submission requirements: 20 digital signature schemes, and 49 PKE schemes and KEMs. Five submissions
were quickly broken and formally withdrawn from the process by their designers. This left a total of 64 first round
candidates [i.9]. In January 2019 NIST announced [i.10] that 26 candidate algorithms would progress to the second
round of evaluation: nine digital signature schemes, and 17 PKE schemes and KEMs [i.11].

In July 2020 NIST announced [i.12] that 15 candidate algorithms would progress to the third round of evaluation. These
were split into seven finalists and eight alternate candidates. NIST described the finalists as the algorithms they consider
to be the most promising for the majority of use cases, and the most likely to be ready for standardization after the end
of the third round. The seven finalists include three digital signature schemes, and four PKE schemes and KEMs. The
alternate candidates were described as having potential for future standardization, but most likely after another round of
evaluation. The eight alternate candidates include three digital signature schemes, and five PKE schemes and KEMs.

The purpose of the present document is to give concise descriptions of the nine PKE schemes and KEMs remaining in
the third round of NIST's standardization process. ETSI TR 103 616 [i.14] provides similar descriptions of the six
remaining digital signature schemes.

The four PKE and KEM finalists are:

• Classic McEliece (see clause 6.1)

• KYBER (see clause 6.2)

• NTRU (see clause 6.3)

• SABER (see clause 6.4)

The five PKE and KEM alternate candidates are:

• Bit Flipping Key Exchange (BIKE) (see clause 7.1)

• FrodoKEM (see clause 7.2)

• Hamming Quasi-Cyclic (HQC) (see clause 7.3)

• NTRU Prime (see clause 7.4)

• Supersingular Isogeny Key Exchange (SIKE) (see clause 7.5)

Each of these schemes has a different profile in terms of security properties and performance characteristics, so it is
expected that some of these schemes will be more suited to specific deployment scenarios than others.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 12

The descriptions provided in the present document are not intended to be substitutes for the detailed specifications
submitted to NIST. Instead, the emphasis is on clear mathematical descriptions that facilitate easy comparison of the
different schemes. Implementation details, such as how to encode polynomials as bit strings, have been omitted
wherever possible. As such, some of the descriptions differ from the submissions in terms of level of abstraction, use of
notation, and choice of variable names. It is expected that details of some of the schemes, such as specific parameter
choices, will change during the third round of evaluation, so for consistency the descriptions are based on the official
submission packages provided to NIST at the beginning of the third round [i.13].

5 Background

5.1 Terminology
A PKE scheme consists of a triple of algorithms:

• Key Generation (PKE.KeyGen). Returns a new public and private key pair.

• Encryption (PKE.Enc). Takes a public key and plaintext as input and returns a ciphertext.

• Decryption (PKE.Dec). Takes a private key and ciphertext as input and returns a plaintext.

NOTE 1: Some of the PKE schemes described in the present document use randomized encryption where the same
public key and plaintext correspond to many different possible ciphertexts. In these schemes the
randomness is derived from an additional input to the encryption process.

NOTE 2: Some of the PKE schemes described in the present document can have decryption failures where the
plaintext returned by the decryption process does not match the original plaintext used in encryption.
Decryption is assumed to always return a plaintext.

PKE schemes are usually unsuitable for bulk data encryption. Consequently, they are often converted into KEMs where
one party encapsulates a session key for another party using the second party's public key. The session key, or a value
derived from that key, is subsequently used by both parties to perform bulk data encryption using a (symmetric) Data
Encapsulation Mechanism (DEM) such as AES. This approach is often referred to as the KEM/DEM paradigm.

A KEM consists of a triple of algorithms:

• Key Generation (KEM.KeyGen). Returns a new public and private key pair.

• Encapsulation (KEM.Enc). Takes a public key as input and returns a randomly selected session key and a
ciphertext that is an encapsulation of the session key.

• Decapsulation (KEM.Dec). Takes as input a private key and a ciphertext and returns a session key.

NOTE 3: Some of the KEM schemes described in the present document can have decapsulation failures where the
session key returned by the decapsulation process does not match the encapsulated session key.

In practice, PKE schemes and KEMs usually involve two parties: a sender and a recipient. The sender encrypts data or
encapsulates a key for the recipient, using the recipient's public key.

5.2 Families of post-quantum algorithms
There are five prominent families of post-quantum algorithms:

• Code-based schemes. The security of code-based schemes depends on the difficulty of decoding vectors to
find the closest codeword or the shortest error vector. Code-based schemes generally fall into two categories:
McEliece-style schemes, which use error correcting codes that can be efficiently decoded given some private
information; and noisy ElGamal-style schemes, which use random linear codes. Code-based cryptography
lends itself more naturally to the construction of PKE schemes and KEMs than to digital signature algorithms.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 13

• Lattice-based schemes. The security of lattice-based schemes depends on the difficulty of finding vectors in a
lattice that are relatively short, or relatively close to some target vector. Lattice-based schemes generally fall
into two categories: NTRU-style schemes, which use lattices that have been specifically constructed to contain
private short vectors; and Learning With Errors (LWE) or Learning With Rounding (LWR) style schemes,
which use particular classes of random lattices. Lattice-based cryptography can be used to construct PKE
schemes, KEMs, and digital signature algorithms. In many cases lattice-based schemes admit worst-case to
average-case security reductions, though these reductions are often not relevant to proposed parameter sets;
see Annex A for more information.

• Multivariate schemes. The security of multivariate schemes depends on the difficulty of solving systems of
quadratic or higher degree multivariate polynomials. Multivariate cryptography lends itself more naturally to
the construction of digital signature algorithms than to PKE and KEM schemes.

• Isogeny-based schemes. The security of isogeny-based schemes depends on the difficulty of recovering a
secret isogeny between a pair of elliptic curves. Isogeny-based cryptography seems to lend itself more
naturally to the construction of PKE and KEM schemes than to digital signatures, though there has been some
recent progress in this area.

• Symmetric schemes. The security of such schemes depends on the security of symmetric cryptographic
primitives such as hash functions and block ciphers. Symmetric cryptography only lends itself to the
construction of digital signature algorithms. Examples include hash-based signatures, such as SPHINCS+, and
the PICNIC digital signature scheme.

Different post-quantum schemes utilize different algebraic structures. In code- and lattice-based cryptography, the
introduction of more structure can lead to improved computational performance and reduced bandwidth requirements.
However, there is a risk that additional structure could introduce new, more efficient attack possibilities. For example,
the most efficient lattice-based schemes, which utilize rings of polynomials, have the most algebraic structure, but
because it is unclear how to exploit this additional structure, security costings usually assume that it offers an attacker
no extra advantage. Understanding whether additional algebraic structure introduces new attack possibilities, for both
code- and lattice-based cryptography, remains an important research topic.

5.3 Security categories
NIST have provided guidance on the evaluation criteria they intend to apply to candidate submissions [i.8]. As part of
this guidance, they have defined the following security categories in terms of the (classical or quantum) resources
required to attack different NIST-approved symmetric primitives:

• Category 1. Resources equivalent to or greater than key recovery for AES-128.

• Category 2. Resources equivalent to or greater than collision search for SHA3-256.

• Category 3. Resources equivalent to or greater than key recovery for AES-192.

• Category 4. Resources equivalent to or greater than collision search for SHA3-384.

• Category 5. Resources equivalent to or greater than key recovery for AES-256.

NIST recommended that submissions include parameter sets that meet the requirements for categories 1, 2 and/or 3, as
they believe that these categories will provide sufficient security for the foreseeable future. However, to demonstrate
flexibility, and to protect against future cryptanalytic breakthroughs, NIST also recommended that submissions include
at least one parameter set that provides a substantially higher level of security. Submitters were asked to include
justifications for the security categories claimed for their proposed parameter sets.

5.4 Security properties
The two main security goals that are relevant for PKE schemes and KEMs are referred to as indistinguishability under
chosen-plaintext, and indistinguishability under chosen-ciphertext, where the latter provides a stronger notion of
security than the former. Both security goals are usually modelled as games:

• Chosen-Plaintext Attack (CPA) security for PKE. The attacker selects two plaintexts and is given the
corresponding ciphertext for one of them. The attacker's goal is to determine which of the plaintexts was
encrypted. The scheme is CPA-secure if the attacker cannot do significantly better than guessing.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 14

• Chosen-Ciphertext Attack (CCA) security for PKE. The attacker selects two plaintexts and is given the
corresponding ciphertext for one of them. The attacker's goal is to determine which of the plaintexts was
encrypted. The attacker is allowed to request the decryption of ciphertexts of their choice, except for the
challenge ciphertext. The scheme is CCA-secure if the attacker cannot do significantly better than guessing,
even with access to the decryption oracle.

• Chosen-Plaintext Attack (CPA) security for KEMs. The attacker is given a ciphertext and either a session
key that is encapsulated by that ciphertext, or a uniformly random key. The attacker's goal is to determine
whether they have been given the session key, or a random key. The scheme is CPA-secure if the attacker
cannot do significantly better than guessing.

• Chosen-Ciphertext Attack (CCA) security for KEMs. The attacker is given a ciphertext and either a session
key that is encapsulated by that ciphertext, or a uniformly random key. The attacker's goal is to determine
whether they have been given the session key, or a random key. The attacker is allowed to request the
decapsulation of ciphertexts of their choice, except for the challenge ciphertext. The scheme is CCA-secure if
the attacker cannot do significantly better than guessing, even with access to the decryption oracle.

Expanded definitions of these properties and additional definitions are given in Annex B.

There are standard techniques available for converting a CPA-secure PKE scheme into a CCA-secure KEM. The most
common approach is to use a variant of the Fujisaki-Okamoto transform [i.15]. Broadly speaking, this usually involves
deriving the randomness required for encryption (or encapsulation) from the value to be encrypted (or encapsulated);
note that this includes the randomness required for the sender to generate an ephemeral key pair. This allows the
recipient to attempt to reconstruct the received ciphertext, and check that the protocol has been followed as expected.

As mentioned above, CCA security is stronger than CPA security: a recipient's public key that is used for encryption or
encapsulation in a CPA-secure scheme can only be safely used once, or the security of the scheme could be
compromised, but a recipient's public key that is used for encryption or encapsulation in a CCA-secure scheme can be
safely reused. If an active adversary is able to reuse a recipient's public key in a CPA-secure scheme, they can send
messages that consist of erroneous ciphertexts that will reveal information about the recipient's private key.

NIST have stated that they intend to standardize at least one CCA-secure PKE scheme or KEM for general use, and that
they will consider standardizing a CPA-secure PKE scheme or KEM for applications where keys are never reused [i.8].
NIST have not mandated that submissions include proofs of CPA or CCA security, but they will consider proofs where
they are made available.

5.5 Finalists and alternate candidates at a glance
Table 1 contains a summary of each of the NIST public-key encryption and key encapsulation finalists.

Table 1: Summary of finalists

Scheme Family Type Structure
Categories Security

Comments
1 2 3 4 5 CPA CCA

Classic McEliece Codes McEliece None Y Y Y Y Y NOTE 1
KYBER Lattice LWE Module Y Y Y Y Y NOTE 2
NTRU Lattice NTRU Ring Y Y Y Y NOTE 3

SABER Lattice LWR Module Y Y Y Y Y
NOTE 1: Classic McEliece is a merger of the second round Classic McEliece and NTS-KEM submissions.
NOTE 2: The KYBER submission states that only the CCA version is to be used in practice.
NOTE 3: NTRU is a merger of the first round NTRUEncrypt and NTRU-HRSS-KEM submissions.

Table 2 contains a summary of each of the NIST public-key encryption and key encapsulation alternate candidates.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 15

Table 2: Summary of alternate candidates

Scheme Family Type Structure
Categories Security

Comments
1 2 3 4 5 CPA CCA

BIKE Codes McEliece Ring Y Y Y Y NOTE 1
FrodoKEM Lattice LWE None Y Y Y Y Y

HQC Lattice Random Ring Y Y Y Y Y
NTRU Prime Lattice NTRU Field Y Y Y Y Y Y Y NOTE 2

SIKE Other Isogeny None Y Y Y Y Y Y
NOTE 1: The BIKE submission does not formally claim that the proposed parameters are CCA-secure.
NOTE 2: The NTRU Prime submission states that only the CCA version is to be used in practice.

6 Finalists

6.1 Classic McEliece

6.1.1 Overview

Classic McEliece is a merger of the Classic McEliece and NTS-KEM submissions from the second round of the NIST
standardization process. Classic McEliece consists of a CCA-secure KEM built from a OW-CPA-secure PKE scheme
using a variant of the Fujisaki-Okamoto transform from [i.16]. The security of Classic McEliece is based on the
difficulty of the syndrome decoding problem for general binary linear codes.

A binary Goppa code is defined by a monic irreducible polynomial ���� ∈ ������ of degree �, and a sequence of �
distinct elements � �, … , �� where 	 ∈ ���. These define a parity-check matrix !" ∈ ���
×� by setting the �#, $�-th entry
of !" to be �	��/�(�). The matrix !" is associated with a parity-check matrix !% ∈ ��

×� to define a binary linear code
& = ' (∈ ��� | !%(� = 0} of length � and dimension � = � − *� with an efficient algorithm for decoding up to � errors.

Given a public general parity-check matrix ! ∈ ��
(���)×� for the code, it is believed to be computationally hard to

recover the private Goppa parity-check matrix !% ∈ ��
(���)×� that allows for fast decoding. It is also believed that

without the private parity-check matrix, there are no decoding algorithms that are more efficient than generic
information set decoding.

Classic McEliece is defined as a CCA-secure KEM only, as the underlying PKE scheme is a building block that is not
intended as a separate submission to the NIST standardization process.

6.1.2 Parameters

The main parameters for Classic McEliece are:

• �, the code length;

• �, the error-correction capability;

• *, the degree of the field ���; and

• � = � − *�, the code dimension.

6.1.3 Auxiliary primitives

Classic McEliece makes use of two auxiliary, symmetric primitives:

• �, a 256-bit cryptographic hash function; and

• KDF, a key derivation function.

The submission describes how to use SHAKE-256 to instantiate these primitives.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 16

6.1.4 Public-key encryption scheme

6.1.4.1 McEliece.PKE.KeyGen

Input: None

Output: Public key ��
 Private key +�

1) Sample a uniformly random monic irreducible polynomial ���� ∈ ���[�] of degree �.

2) Sample � �, … , ��, a uniformly random sequence of � distinct elements of ���.

3) Construct the parity-check matrix !" ∈ ���
×�.

4) Convert !" to a parity-check matrix !% ∈ ��
(���)×�.

5) Row reduce !% to systematic form ! ≔ ����� !′� ∈ ��
(���)×�.

The public key is �� ≔ !′ ∈ ��
(���)×�. The private key is +� ≔ (�, �, … , �).

NOTE 1: In Step 5), if !% cannot be row reduced to systematic form then key generation is restarted.

NOTE 2: The submission describes a version of Classic McEliece that allows the parity-check matrix in Step 5) to
be computed in semi-systematic form. This is designed to decrease the failure probability of Step 5).

6.1.4.2 McEliece.PKE.Enc

Input: Public key ��
Vector , (weight �)

Output: Ciphertext (

1) Parse the public key as �� = !′ ∈ ��
(���)×�.

2) Construct the parity-check matrix ! ≔ ����� !′� ∈ ��
(���)×�.

3) Compute (≔ !, ∈ �����.

The ciphertext is (.

6.1.4.3 McEliece.PKE.Dec

Input: Private key +�
 Ciphertext (

Output: Vector , (weight �),
 or ⊥

1) Construct the �-bit vector � ≔ (∥ 0� ∈ ���, where 0� denotes the all-zero vector with � entries.

2) Return the unique codeword , in the binary Goppa code defined by +� that is distance � from �.

3) If there is no such codeword, return ⊥.

NOTE: The Classic McEliece submission does not define a specific algorithm for use in Step 2), but it provides
references for different approaches to finding the nearest codeword in a binary Goppa code.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 17

6.1.5 Key encapsulation mechanism

6.1.5.1 McEliece.KEM.KeyGen

Input: None

Output: Public key ��
 Augmented private key +�

1) Sample a uniformly random �-bit string -.

2) Convert - to a vector . ∈ ���.

3) Call McEliece.PKE.KeyGen() to generate a public key �� and private key +�′.

The public key is ��. The augmented private key is +� ≔ �+��, ��, .�.

NOTE: The Classic McEliece submission specifies how these elements, including -, can be generated
deterministically from a seed.

6.1.5.2 McEliece.KEM.Enc

Input: Public key ��

Output: Ciphertext /
 Session key 0 (length 256 bits)

1) Sample a uniformly random vector , ∈ ��� of weight �.

2) Encrypt (� ≔ McEliece.PKE.Enc���, ,�.

3) Compute /� ≔ ��2 ∥ ,�.

4) Derive the session key 0 ≔ KDF�1 ∥ , ∥ (� ∥ /��.

The ciphertext is / ≔ ((�, /�). The session key is 0.

6.1.5.3 McEliece.KEM.Dec

Input: Augmented private key +�
 Ciphertext /

Output: Session key 0 (length 256 bits)

1) Parse the private key as +� = �+��, ��, .� and the ciphertext as / = ((�, /�).

2) Set 1 ≔ 1.

3) Call McEliece.PKE.Dec�+�, (�� to recover , or ⊥.

4) If the output is ⊥, set 1 ≔ 0 and , ≔ ..

5) Re-encrypt (�� ≔ McEliece.PKE.Enc���, ,�.

6) If (�� ≠ (�, set 1 ≔ 0 and , ≔ ..

7) Compute /�� ≔ ��2 ∥ ,�.

8) If /�� ≠ /�, set 1 ≔ 0 and , ≔ ..

9) Derive the session key 0 ≔ KDF�1 ∥ , ∥ (� ∥ /��.

NOTE: In Step 9), 0 will be a random key rather than a shared session key if 1 = 0 and , = ..

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 18

6.1.6 Parameter sets

The Classic McEliece submission includes the parameter sets shown in Table 3.

Table 3: Proposed parameters for Classic McEliece

Set � � � Claimed Security
mceliece348864 12 3 488 64 Category 1
mceliece460896 13 4 608 96 Category 3

mceliece6960119 13 6 960 119 Category 5
mceliece6688128 13 6 688 128 Category 5
mceliece8192128 13 8 192 128 Category 5

These parameter sets lead to the public key, private key, and ciphertext sizes shown in Table 4.

Table 4: Classic McEliece public key, private key, and ciphertext sizes

Set Public Key
(bytes)

Private Key
(bytes)

Ciphertext
(bytes)

mceliece348864 261 120 6 452 128
mceliece460896 524 160 13 568 188

mceliece6960119 1 044 992 13 892 240
mceliece6688128 1 047 319 13 908 226
mceliece8192128 1 357 824 14 080 240

6.1.7 Security

The main attacks considered are based on information set decoding, as described in Annex C. The Classic McEliece
submission does not include explicit security costings, so Table 5 shows estimated costs for each parameter set for the
classical security of message recovery, derived using the methodology described in Annex C. Costs are not included for
key recovery, as key recovery is believed to be significantly more difficult than message recovery.

Table 5: Classical security costings for Classic McEliece

Set Message recovery
(bits)

mceliece348864 140
mceliece460896 181

mceliece6688128 257
mceliece6960119 258
mceliece8192128 294

McEliece.KEM uses a variant of the Fujisaki-Okamoto transform from [i.16] to achieve tight CCA security. Further
work has achieved similar tightness for QROM attacks [i.19].

6.1.8 Performance

The Classic McEliece submission includes performance figures for an AVX2-optimized implementation run on a single
core of a 3,5 GHz Intel® Xeon® E3-1275 v3 processor. The performance figures for each parameter set are shown in
Table 6. The semi-systematic parameter sets have different key generation algorithms, but the same encryption and
decryption algorithms.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 19

Table 6: Classic McEliece performance figures

Set Version McEliece.KEM.KeyGen
(cycles)

McEliece.KEM.Enc
(cycles)

McEliece.KEM.Dec
(cycles)

mceliece348864
Systematic 58 034 411

44 350 134 745
Semi-systematic 36 641 040

mceliece460896
Systematic 215 785 433

117 782 271 694
Semi-systematic 117 067 765

mceliece6960119
Systematic 556 495 649

151 721 323 957
Semi-systematic 284 584 602

mceliece6688128
Systematic 438 217 685

161 224 301 480
Semi-systematic 246 508 730

mceliece8192128
Systematic 514 489 441

178 093 326 531
Semi-Systematic 316 202 817

6.2 KYBER

6.2.1 Overview

KYBER is part of the CRYSTALS package, along with the DILITHIUM digital signature scheme. KYBER consists of
a CPA-secure PKE scheme that is converted into a CCA-secure KEM using a variant of the Fujisaki-Okamoto
transform from [i.16]. The security of KYBER is based on the Module Learning With Errors (MLWE) problem.

Let �� denote the polynomial ring (ℤ�[�])/(�� + 1) for a prime
 and a power-of-two �. A MLWE sample is a pair of
the form �2,23 + ,�, where 2 ∈ ���×� is a public matrix consisting of polynomials whose coefficients are sampled
uniformly at random from ℤ�, and 3 ∈ ��� and , ∈ ��� are private vectors of polynomials whose coefficients are
sampled from a small distribution over ℤ�. The MLWE problem asserts that it is computationally hard to distinguish
MLWE samples of the form �2,23 + ,	� from pairs of the form �2,4�, where 4 ∈ ��� is a vector consisting of
polynomials sampled uniformly at random from ��.

The submission makes it clear that KYBER is defined as a CCA-secure KEM only, and that the underlying PKE
scheme is a building block that is not intended as a separate submission to the NIST standardization process. Part of the
provided rationale for this decision is that in addition to protecting against key reuse, the CCA transform also protects
against some implementation mistakes, such as sampling small polynomials from the wrong distribution.

6.2.2 Parameters

The main parameters for KYBER are:

• �, the degree of the polynomial ring ��;

•
, the modulus of the polynomial ring ��;

• �, the rank of the matrices and vectors over ��; and

• �� and ��, the width of the zero-centred binomial distributions ��� and ���.

For all KYBER parameter sets � ≔ 256 and
 ≔ 3 329. The security level is varied primarily by changing �� and the
rank � of the module, which means that the underlying polynomial arithmetic operations remain fixed.

The value of
 used by KYBER is chosen to keep the probability of decryption failures low, while allowing a variant of
the Number Theoretic Transform (NTT) to be used to carry out fast multiplication of elements in ��. For efficiency,
some values are computed or transmitted in the NTT domain. Consequently, the specific NTT used by KYBER is part
of the definition of the scheme. However, for ease of exposition, the present document does not include a description of
the NTT, as its details are not integral to the overall design of KYBER, and do not affect any of the security arguments.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 20

6.2.3 Auxiliary primitives

KYBER makes use of several auxiliary, symmetric primitives:

• �, a 512-bit cryptographic hash function;

• �, a 256-bit cryptographic hash function;

• KDF, a key derivation function;

• PRF, a pseudorandom function; and

• XOF, an extendable output function.

The submission describes two different approaches to instantiate these primitives, as shown in Table 7.

Table 7: Auxiliary symmetric primitives for KYBER

Primitive
Version

FIPS-202 90s
� SHA3-512 SHA-512
� SHA3-256 SHA-256

KDF SHAKE-256 SHAKE-256
PRF SHAKE-256 AES-256 in counter mode
XOF SHAKE-128 AES-256 in counter mode

The "90s" variant is included to evaluate performance on platforms that provide hardware support for AES and SHA-2.

KYBER also makes use of the following two functions:

• Compress��,5� ≔ ⌈�2�/
� ⋅ �⌋mod 2�

• Decompress��,5� ≔ ⌈�
/2�� ⋅ �⌋

Both functions are generalized to work with polynomials by operating coefficientwise.

6.2.4 Public-key encryption scheme

6.2.4.1 KYBER.PKE.KeyGen

Input: None

Output: Public key ��
 Private key +�

1) Sample a uniformly random 256-bit seed 5.

2) Hash the seed 5 using � to produce two 256-bit seeds 5� ∥ 5� ≔ ��5�.

3) Expand the seed 5� using XOF to produce the public matrix 2 ∈ ���×�.

4) Sample 3�, ,� ∈ ��� deterministically from ��� using PRF with the seed 5�.

5) Compute 6 ≔ 23� + ,� ∈ ���.

The public key is �� ≔ �6,5��. The private key is +� ≔ 3�.

NOTE: The KYBER submission uses the NTT for efficient polynomial multiplication. The public matrix 2 is
expanded directly in the NTT domain, whereas the private values are sampled in the normal domain and
then transformed to the NTT domain. The public value 6 is distributed in the NTT domain, and the private
value 3� is stored in the NTT domain.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 21

6.2.4.2 KYBER.PKE.Enc

Input: Public key ��
 Plaintext * (length 256 bits)
 Random seed 7 (length 256 bits)

Output: Ciphertext /

1) Parse the public key as �� = (6, 5�).

2) Expand the seed 5� using XOF to produce the public matrix 2 ∈ ���×�.

3) 3) Sample 3�, ,� ∈ ��� deterministically from ��� and ��� using PRF with the seed 7.

4) Compute 4 ≔ 2�3� + ,� ∈ ���.

5) Sample 8� ∈ �� deterministically from ��� using PRF with the seed 7.

6) Encode the plaintext as an element 9 ∈ �� by setting each coefficient 9	 to ⌈*	(
 2⁄)⌋.

7) Compute ; ≔ 6�3� + 8� + 9 ∈ ��.

8) Compute 4� ≔ Compress�4,5�� and ;� ≔ Compress�;,5��.

The ciphertext is / ≔ �4�, ;��.

NOTE 1: The values 5� and 5� are specified as part of each parameter set.

NOTE 2: The public matrix 2 is expanded directly in the NTT domain. The public value 6 is transmitted in the
NTT domain. The private vector 3� is sampled in the normal domain and transformed to the NTT domain
to compute 2�3� and 6�3�, but the resulting values are transformed back to the normal domain before
adding ,� and 8� + 9, respectively. The final compression step is performed in the normal domain.

6.2.4.3 KYBER.PKE.Dec

Input: Private key +�
 Ciphertext /

Output: Plaintext * (length 256 bits)

1) Parse the private key as +� = 3� and the ciphertext as / = �4�, ;��.

2) Compute 4 ≔ Decompress�4�,5�� and ; ≔ Decompress�;�,5��.

3) Compute 9� ≔ ; − 3��4 ∈ ��.

4) Recover the plaintext * by setting each bit *	 to ⌈9	��2/
�⌋mod 2.

NOTE: The private value 3� is stored in the NTT domain. The ciphertext value 4 is decompressed in the normal
domain, transformed to the NTT domain to compute 3��4, and the result is transformed back to the normal
domain before computing ; − 3��4. The final decoding step is performed in the normal domain.

6.2.5 Key encapsulation mechanism

6.2.5.1 KYBER.KEM.KeyGen

Input: None

Output: Public key ��
 Augmented private key +�

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 22

1) Sample a uniformly random 256-bit value -.

2) Call KYBER.PKE.KeyGen() to generate a public key �� and corresponding private key +��.

The public key is ��. The augmented private key is +� ≔ �+��, ��, -�.

6.2.5.2 KYBER.KEM.Enc

Input: Public key ��

Output: Ciphertext /
 Session key 0 (length 256 bits)

1) Sample a uniformly random 256-bit message *.

2) Derive two 256-bit seeds � and 7 by computing � ∥ 7 ≔ �<��*� ∥ �����=.

3) Encrypt / ≔ KYBER.PKE.Enc���,��*�, 7�.

4) Derive the session key 0 ≔ KDF<� ∥ ��/�=.

The ciphertext is /. The session key is 0.

6.2.5.3 KYBER.KEM.Dec

Input: Augmented private key +�
 Ciphertext /

Output: Session key 0 (length 256 bits)

1) Parse the private key as +� = �+��, ��, -�.

2) Decrypt *� ≔ KYBER.PKE.Dec�+��, /�.

3) Derive two 256-bit seeds �� and 7� by computing �� ∥ 7� ≔ �<*� ∥ �����=.

4) Re-encrypt /� ≔ KYBER.PKE.Enc���,*�, 7��.

5) If /� = /, then derive the session key 0 ≔ KDF<�� ∥ ��/�=.

6) Otherwise, derive a random key 0 ≔ KDF<- ∥ ��/�=.

6.2.6 Parameter sets

The KYBER submission includes the parameter sets shown in Table 8.

Table 8: Proposed parameters for KYBER

Set � � � �� �� 	� 	�
Failure

probability
Claimed
security

KYBER512 256 3 329 2 3 2 10 4 2-139 Category 1
KYBER768 256 3 329 3 2 2 10 4 2-164 Category 2

KYBER1024 256 3 329 4 2 2 11 5 2-174 Category 3

These parameter sets lead to the public key, private key, and ciphertext sizes shown in Table 9.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 23

Table 9: KYBER public key, private key, and ciphertext sizes

Set Public Key
(bytes)

Private Key
(bytes)

Ciphertext
(bytes)

KYBER512 800 1 632 768
KYBER768 1 184 2 400 1 088

KYBER1024 1 568 3 168 1 568

6.2.7 Security

The main attacks considered are the primal and dual attacks described in Annex D. Because KYBER is based on the
MLWE problem, its security depends on the difficulty of finding short vectors in a particular class of lattices, which are
referred to as module lattices. However, because it is not known how to exploit KYBER's algebraic structure, the
attacks are costed using the general-purpose core-SVP methodology described in Annex D. The costs for each
parameter set are shown in Table 10.

Table 10: Core-SVP costings for KYBER (primal attack only)

Set Classical core-SVP
(bits)

Quantum core-SVP
(bits)

KYBER512 118 107
KYBER768 182 165

KYBER1024 256 232

The KYBER submission claims that KYBER.PKE has a tight proof of security in the ROM that it is CPA-secure based
on the computational hardness of the MLWE problem, and that KYBER.KEM has a tight proof of security in the ROM
that it is CCA-secure based on the CPA security of KYBER.PKE.

The KYBER submission claims that KYBER.KEM has a non-tight proof of security in the QROM that it is CCA-secure
provided KYBER.PKE is CPA-secure in the QROM. A tight proof is possible, but relies on the assumption that a
deterministic version of KYBER.PKE is pseudorandom in the QROM.

6.2.8 Performance

The KYBER submission includes performance figures for AVX2-optimized implementations run on a single core of a
3,5 GHz Intel® Core™ i7-4770K processor. The performance figures for each parameter set are shown in Table 11.

Table 11: KYBER performance figures

Set Version KYBER.KEM.KeyGen
(cycles)

KYBER.KEM.Enc
(cycles)

KYBER.KEM.Dec
(cycles)

KYBER512
FIPS-202 33 856 45 200 59 088

90s 21 880 28 592 38 752

KYBER768
FIPS-202 52 732 67 624 82 220

90s 30 460 40 140 51 512

KYBER1024
FIPS-202 73 544 97 324 115 332

90s 43 212 56 556 71 180

6.3 NTRU

6.3.1 Overview

NTRU is a merger of the NTRUEncrypt and NTRU-HRSS-KEM submissions from the first round of the NIST
standardization process. NTRU consists of a OW-CPA-secure PKE scheme that is converted into a CCA-secure KEM
using a variant of the Fujisaki-Okamoto transform from [i.16]. The security of NTRU is based on the difficulty of
finding short vectors in a particular class of structured lattices.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 24

Let �� denote the polynomial ring (ℤ�[�])/(�� + 1) for a power-of-two
 and a prime �. The NTRU problem asserts
that given a uniformly random polynomial ℎ ∈ �� , it is computationally hard to find polynomials � and � ∈ �� , such
that ℎ = �/�, and � and � are short when considered as vectors.

6.3.2 Parameters

The main parameters for NTRU are:

• �, the degree of the polynomial ring � ≔ (ℤ[�])/(�� + 1);

•
, the modulus of the polynomial rings �� ≔ (ℤ�[�])/(�� + 1) and >� ≔ (ℤ�[�])/(���� + ���� + ⋯ + 1);

• �, the auxiliary modulus; and

• ℒ� , ℒ� , ℒ� , ℒ
, sample spaces for polynomials �,�, 7,* respectively.

For all NTRU parameter sets � ≔ 3. The degree � is chosen to be prime so that ���� + ���� + ⋯ + 1 is irreducible.
The modulus
 is chosen to be a power-of-two to make modular reductions trivial. The security level is varied by
changing � and
. The parameter sets are chosen to ensure that NTRU is not susceptible to decryption failures.

To describe the samples spaces, the following definitions are used:

• A polynomial in ℤ[�] is said to be ternary if its coefficients all lie in {−1,0,1};

• ? is the set of non-zero ternary polynomials in ℤ[�] of degree at most � − 2;

• ?�5� is the set of polynomials in ? with 5/2 coefficients equal to +1 and 5/2 coefficients equal to −1;

• ?� is the set of polynomials ; = ;������� + ⋯ + ;�� + ;� ∈ ? such that ;�;� + ⋯ + ;���;��� ≥ 0; and

• ?�� is the set of polynomials of the form �� + 1�; for ; ∈ ?�.

6.3.3 Auxiliary primitives

NTRU makes use of the following auxiliary, symmetric primitives:

• �, a 256-bit cryptographic hash function; and

• KDF, a key derivation function.

The submission describes how to use SHA3-256 to instantiate � and KDF.

The submission also makes use of an injection Convert ∶ >� ⟶ ℤ[�] such that for any * ∈ ℒ
 and *� = * in >�

Convert�*�� = *.

The Convert function depends on the choice of sample space ℒ
.

6.3.4 Public-key encryption scheme

6.3.4.1 NTRU.PKE.KeyGen

Input: None

Output: Public key ��
 Private key +�

1) Sample � ∈ ℒ� and � ∈ ℒ�.

2) Compute the inverse �� of � in >�.

3) Compute ℎ ≔ ���� in ��.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 25

4) Compute the inverse ℎ� of ℎ in >�.

5) Compute the inverse �� of � in >�.

The public key is �� ≔ ℎ. The private key is s� ≔ <�, ��, ℎ�=.

NOTE: If the inverse does not exist in Step 2), 4), or 5) then key generation is restarted.

6.3.4.2 NTRU.PKE.Enc

Input: Public key ��
 Plaintext �7,*� (7 ∈ ℒ� ,* ∈ ℒ
)

Output: Ciphertext /

1) Parse the public key as �� = ℎ.

2) Compute *′ ≔ Convert(*).

3) Compute / ≔ 7ℎ + *′ in ��.

The ciphertext is /.

6.3.4.3 NTRU.PKE.Dec

Input: Private key +�
 Ciphertext /

Output: Plaintext �7,*� (7 ∈ ℒ� ,* ∈ ℒ
),
 or ⊥.

1) Parse the private key as s� = <�, ��, ℎ�=.

2) If / ≠ 0 in >� then return ⊥.

3) Compute @ ≔ /� in ��.

4) Compute * ≔ @�� in >�.

5) Compute *� ≔ Convert�*�.

6) Compute 7 ≔ (/ − *�)ℎ� in >�.

7) If 7 ∉ ℒ� or *′ ∉ ℒ
 then return ⊥.

The plaintext is �7,*�.

6.3.5 Key encapsulation mechanism

6.3.5.1 NTRU.KEM.KeyGen

Input: None

Output: Public key ��
 Augmented private key +�

1) Sample a uniformly random 256-bit value -.

2) Call NTRU.PKE.KeyGen() to generate a public key �� and corresponding private key +��.

The public key is ��. The augmented private key is s� ≔ �+��, -�.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 26

6.3.5.2 NTRU.KEM.Enc

Input: Public key ��

Output: Ciphertext /
 Session key 0 (length 256 bits)

1) Sample 7 ∈ ℒ� and * ∈ ℒ
.

2) Encrypt / ≔ NTRU.PKE.Enc<��, �7,*�=.

3) Derive the session key 0 ≔ KDF�7 ∥ *�.

The ciphertext is /. The session key is 0.

6.3.5.3 NTRU.KEM.Dec

Input: Private key +�
 Ciphertext /

Output: Session key 0 (length 256 bits)

1) Parse the private key s� = �+��, -�.

2) Call NTRU.PKE.Dec�+��, /� to recover �7,*� or ⊥.

3) If the output is �7,*�, derive the session key 0 ≔ KDF�7 ∥ *�.

4) If the output is ⊥, derive a random key 0 ≔ KDF�- ∥ /�.

6.3.6 Parameter sets

The NTRU submission includes the parameter sets shown in Table 12.

Table 12: Proposed parameters for NTRU

Set � �
�
�
�
�
Failure

probability
Claimed
security

ntruhps2048509 509 2 048 ? ��254
 � ��254
 2
	
��,
 -

ntruhps2048677 677 2 048 ? ��254
 � ��254
 2
	
�
,� Category 1

ntruhps4096821 821 4 096 �� ��510
 � ��254
 2
	�

,
 Category 3

ntruhrss701 701 8 192 �� �+
′ � � 2

	���,� Category 1

These parameter sets lead to the public key, private key, and ciphertext sizes shown in Table 13.

Table 13: NTRU public key, private key, and ciphertext sizes

Set Public Key
(bytes)

Private Key
(bytes)

Ciphertext
(bytes)

ntruhps2048509 699 935 699
ntruhps2048677 930 1 234 930
ntruhps4096821 1 230 1 590 1 230

ntruhrss701 1 138 1 450 1 138

6.3.7 Security

The main attacks considered are the primal and hybrid attacks described in Annex D. Because NTRU is based on the
NTRU assumption, its security depends on the difficulty of finding short vectors in a particular class of lattices, which
are referred to as NTRU lattices. However, because it is not known how to exploit NTRU's algebraic structure, the
attacks are costed using the general-purpose core-SVP methodology described in Annex D. The costs for both attacks
are shown in Table 14.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 27

Table 14: Core-SVP costings for NTRU

Set
Primal attack

classical core-SVP
(bits)

Hybrid attack
classical core-SVP

(bits)
ntruhps2048509 106 105
ntruhps2048677 145 144
ntruhps4096821 179 178

ntruhrss701 136 134

The NTRU submission claims that NTRU.KEM is CCA-secure in the ROM and the QROM provided NTRU.PKE is
OW-CPA-secure. The submission claims that the proof in the ROM is tight, but the proof in the QROM is non-tight. A
tight proof in the QROM is possible, but relies on the additional assumption that NTRU.PKE is pseudorandom.

6.3.8 Performance

The NTRU submission includes performance figures for an AVX2-optimized implementation run on a single core of a
3,5 GHz Intel® Core™ i7-4770K processor. The performance figures for each parameter set are shown in Table 15.

Table 15: NTRU performance figures

Set NTRU.KEM.KeyGen
(cycles)

NTRU.KEM.Enc
(cycles)

NTRU.KEM.Dec
(cycles)

ntruhps2048509 191 279 61 331 40 026
ntruhps2048677 309 216 83 519 59 729
ntruhps4096821 431 667 98 809 75 384

ntruhrss701 340 823 50 441 62 267

6.4 SABER

6.4.1 Overview

SABER consists of a CPA-secure PKE scheme that is converted into a CCA-secure KEM using a variant of the
Fujisaki-Okamoto transform from [i.16]. The security of SABER is based on the Module Learning With Rounding
(MLWR) problem.

Let �� and �� denote the polynomial rings (ℤ�[�])/(�� + 1) and (ℤ�[�])/(�� + 1), where � and
 are chosen so that
� divides
, and � is a power-of-two. A MLWR sample is a pair of the form <2, ⌊23⌉�→�=, where 2 ∈ ���×� is a public
matrix consisting of polynomials with coefficients sampled uniformly at random from ℤ�, 3 ∈ ��� is a private vector of
polynomials with coefficients sampled from a small distribution over ℤ�, and ⌊23⌉�→� denotes a modulus switching
operation that deterministically rounds the components of 23 from elements in �� to elements in ��. The MLWR
problem asserts that it is computationally hard to distinguish MLWR samples of the form <2, ⌊23⌉�→�= from pairs of
the form <2, ⌊4⌉�→�=, where 4 is a uniformly random element of ���.

The standard way to instantiate the modulus switching operation ⌊�⌉�→� is as the function ⌊(�
)⁄ �⌉mod �, where
� ∈ ℤ� and ⌊�⌉�→� ∈ ℤ�, which can be generalized to work over vectors and polynomials by operating on each
component. This function can be efficiently implemented by adding a constant and shifting.

NOTE: The SABER submission does not instantiate ⌊�⌉�→� in this way due to the choice of constants used in the
adding and shifting operations.

6.4.2 Parameters

The main parameters for SABER are:

• �, the degree of the polynomial rings �� ,��, and ��;

•
, the modulus of the base polynomial ring ��;

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 28

• �, the modulus of the polynomial ring ��, used when modulus switching from
 to �;

• A, the modulus of the polynomial ring ��, used when modulus switching from � to A;

• �, the rank of the matrices and vectors over ��; and

• �, the width of the zero-centred binomial distribution ��.

For all SABER parameter sets � ≔ 256,
 ≔ 2��, and � ≔ 2��. Note that �,
, and A, are chosen as powers of 2 so
that � divides
, and A divides �, and to make modular reductions trivial. Modulus switching from � to A is used to
compress the ciphertext. The security level is varied by changing � and �, which means that the underlying polynomial
arithmetic operations remain fixed.

6.4.3 Auxiliary primitives

SABER makes use of several auxiliary, symmetric primitives:

• �, a 512-bit cryptographic hash function;

• �, a 256-bit cryptographic hash function;

• KDF, a key derivation function;

• PRF, a pseudorandom function; and

• XOF, an extendable output function.

The submission describes two different approaches to instantiate these primitives, as shown in Table 16.

Table 16: Auxiliary symmetric primitives for SABER

Primitive
Version

Saber Saber-90s
� SHA3-512 SHA2-512
� SHA3-256 SHA2-256

KDF SHA3-256 SHA2-256
PRF SHAKE-128 AES-256 in counter mode
XOF SHAKE-128 AES-256 in counter mode

6.4.4 Public-key encryption scheme

6.4.4.1 SABER.PKE.KeyGen

Input: None

Output: Public key ��
 Private key +�

1) Sample a uniformly random 256-bit seed 5.

2) Expand the seed 5 using XOF to produce the public matrix 2 ∈ ���×�.

3) Sample a uniformly random 256-bit seed 7.

4) Sample 3� ∈ ��� deterministically from �� using PRF with the seed 7.

5) Compute 6 ≔ ⌊2�3�⌉�→� ∈ ���.

The public key is �� ≔ �6,5�. The private key is +� ≔ 3�.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 29

6.4.4.2 SABER.PKE.Enc

Input: Public key ��
 Plaintext * (length 256 bits)
 Random seed 7 (length 256 bits)

Output: Ciphertext /

1) Parse the public key as �� = (6, 5).

2) Expand the seed 5 using XOF to produce the public matrix 2 ∈ ���×�.

3) Sample 3� ∈ ��� deterministically from �� using PRF with the seed 7.

4) Compute 4 ≔ ⌊23�⌉�→� ∈ ���.

5) Compute ; ≔ 6�3� ∈ ��.

6) Encode the plaintext as an element 9 ∈ �� by setting each coefficient 9	 to *	(� 2⁄).

7) Compress ;� ≔ ⌊; − 9⌉�→� ∈ ��.

The ciphertext is / ≔ �4, ;��.

6.4.4.3 SABER.PKE.Dec

Input: Private key +�
 Ciphertext /

Output: Plaintext * (length 256 bits)

1) Parse the private key as +� = 3� and the ciphertext as / = �4, ;��.

2) Compute ; ≔ 4�3� ∈ ��.

3) Recover the plaintext by computing * ≔ B; −
�

�
;�C

�→�
∈ ��.

6.4.5 Key encapsulation mechanism

6.4.5.1 SABER.KEM.KeyGen

Input: None

Output: Public key ��
 Augmented private key +�

1) Sample a uniformly random 256-bit value -.

2) Call SABER.PKE.KeyGen() to generate a public key �� and corresponding private key +��.

The public key is ��. The augmented private key is +� ≔ �+��, ��, -�.

6.4.5.2 SABER.KEM.Enc

Input: Public key ��

Output: Ciphertext /
 Session key 0 (length 256 bits)

1) Sample a uniformly random 256-bit message *.

2) Derive two 256-bit seeds � and 7 by computing � ∥ 7 ≔ �(����� ∥ *).

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 30

3) Encrypt / ≔ SABER.PKE.Enc���,*, 7�.

4) Derive the session key 0 ≔ KDF�� ∥ /�.

The ciphertext is /. The session key is 0.

6.4.5.3 SABER.KEM.Dec

Input: Ciphertext /
 Augmented private key +�

Output: Session key 0 (length 256 bits)

1) Parse the private key as +� = �+��, ��, -�.

2) Decrypt *� ≔ SABER.PKE.Dec�/, +���.

3) Derive two 256-bit seeds �� and 7� by computing �� ∥ 7� ≔ ������� ∥ *��.

4) Re-encrypt /� ≔ SABER.PKE.Enc���,*�, 7��.

5) If /� = /, then derive the session key 0 ≔ KDF��� ∥ /�.

6) Otherwise, derive a random key 0 ≔ KDF�- ∥ /�.

6.4.6 Parameter sets

The SABER submission includes the parameter sets shown in Table 17.

Table 17: Proposed parameters for SABER

Set � � � � � �
Failure

probability
Claimed
security

LightSaber 256 2
�
 2

�� 2

 2 10 2-120 Category 1

Saber 256 2
�
 2

�� 2
� 3 8 2-136 Category 3

FireSaber 256 2
�
 2

�� 2
� 4 6 2-165 Category 5

These parameter sets lead to the public key, private key, and ciphertext sizes shown in Table 18.

Table 18: SABER public key, private key, and ciphertext sizes

Set Public Key
(bytes)

Private Key
(bytes)

Ciphertext
(bytes)

LightSaber 672 1 568 736
Saber 992 2 304 1 088

FireSaber 1 312 3 040 1 472

6.4.7 Security

The main attacks considered are the primal and dual attacks described in Annex D. Because SABER is based on the
MLWR problem, its security depends on the difficulty of finding short vectors in a particular class of lattices, which are
referred to as module lattices. However, because it is not known how to exploit SABER's algebraic structure, or its use
of rounding, the attacks are costed using the general-purpose core-SVP methodology described in Annex D. The costs
for each parameter set are shown in Table 19.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 31

Table 19: Core-SVP costings for SABER (primal attack only)

Set Classical core-SVP
(bits)

Quantum core-SVP
(bits)

LightSaber 118 107
Saber 189 172

FireSaber 260 236

The SABER submission claims that SABER.PKE has a tight proof of security in the ROM that it is CPA-secure based
on the computational hardness of the MLWR problem, and that SABER.KEM has a tight proof of security in the ROM
that it is CCA-secure based on the CPA security of SABER.PKE.

The SABER submission claims that SABER.KEM has a non-tight proof of security in the QROM that it is CCA-secure
provided SABER.PKE is OW-CPA-secure, which holds by virtue of SABER.PKE being CPA-secure.

6.4.8 Performance

The SABER submission includes performance figures for AVX2-optimized implementations run on a 2,0 GHz Intel®
Core™ i7-4510U processor. The performance figures for each parameter set are shown in Table 20.

Table 20: SABER performance figures

Set Version SABER.KEM.Keygen
(cycles)

SABER.KEM.Enc
(cycles)

SABER.KEM.Dec
(cycles)

LightSaber
Saber 45 152 49 948 47 852

Saber-90s 28 928 35 491 35 123

Saber
Saber 66 727 79 064 76 612

Saber-90s 36 315 45 575 46 380

FireSaber
Saber 100 959 117 151 116 095

Saber-90s 57 144 70 335 72 797

7 Alternate candidates

7.1 BIKE

7.1.1 Overview

BIKE is a CPA-secure KEM that is based on Quasi-Cyclic Moderate Density Parity Check (QC-MDPC) codes.

Let �� denote the polynomial ring �� = (ℤ�[�])/(�� + 1) for a prime �. A QC-MDPC code of length 2� and rank �
is a linear code & = ' (∈ ���×� | !(� = 0} defined by a quasi-cyclic parity-check matrix ! = �ℎ� ℎ�� ∈ ���×� which
has moderate Hamming weight � = D<√�=. Recovering the private moderate-density parity-check matrix ! from a
public description of the QC-MDPC code & is equivalent to finding a codeword of weight � in the dual code generated
by !. This is believed to be computationally hard when the parameters are chosen appropriately.

Let , = �8� 8�� ∈ ���×� be an error vector with moderate Hamming weight � = D<√�=. The syndrome corresponding
to , is the element + = !,� ∈ ��. There are efficient algorithms for recovering the weight � error vector , from the
syndrome + when the moderate-density parity-check matrix ! is known. If the moderate-density parity-check matrix !
is not known, then syndrome decoding for a QC-MDPC code is believed to be as hard as syndrome decoding for a
random quasi-cyclic code.

BIKE uses a variant of the Fujisaki-Okamoto transform from [i.16] to convert a CPA-secure PKE into a CCA-secure
KEM. However, CCA security relies on the probability of a decoding failure being sufficiently low. The parameters
proposed for BIKE are estimated to have a low enough decoding failure probability, but there is no formal proof of this,
so the BIKE submission only claims CPA-security for the KEM.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 32

7.1.2 Parameters

The main parameters for BIKE are:

• �, the degree of the polynomial ring ��;

• �, the combined weight of the private polynomials in key generation; and

• �, the combined weight of the private polynomials in encryption and encapsulation.

The degree � is chosen to be a prime where the only irreducible factors of �� + 1 over the field ℤ� are � + 1 and
���� + ⋯ + � + 1.

The weight � is chosen so that � ≡ 2 �mod 4�. This guarantees that the polynomials of weight �/2 sampled in key
generation will always be invertible in ��.

NOTE: Where necessary, a weight function, denoted ��(�), which returns the weight of the input polynomial �,
is used to clarify certain requirements in the algorithm descriptions.

7.1.3 Decoding

BIKE uses a decoder that iteratively flips bits in a candidate error vector based on the number of incorrect parity-check
equations that use those bits. The third round submission recommends the Black-Gray-Flip decoder by Drucker,
Gueron, and Kostic [i.17]. Previous versions of BIKE used different decoders.

Bit flipping decoders can fail to recover the correct error vector; such decoding failures leak information about the
private parity-check matrix. The probability of a decoding failure is sensitive to the specific choice of decoder and
decoding parameters.

NOTE: The description of BIKE given in the present clause assumes that the decoding algorithm always returns
an error vector, even if it is incorrect.

7.1.4 Auxiliary primitives

BIKE makes use of several auxiliary, symmetric primitives:

• �, a 256-bit cryptographic hash function;

• KDF, a key derivation function; and

• PRF, a pseudorandom function.

The submission describes how to use SHA-2 and AES to instantiate these primitives, as shown in Table 21.

Table 21: Auxiliary symmetric primitives for BIKE

Primitive Instantiation
� SHA-384, output truncated to 256 bits

KDF SHA-384, output truncated to 256 bits
PRF AES-256 in counter mode

7.1.5 Public-key encryption scheme

7.1.5.1 BIKE.PKE.KeyGen

Input: None

Output: Public key ��
 Private key +�

1) Sample uniformly random �,� ∈ �� so that ��(�) = ��(�) = �/2.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 33

2) Compute ℎ ≔ �/� ∈ ��.

The public key is �� ≔ ℎ. The private key is +� ≔ (�,�).

7.1.5.2 BIKE.PKE.Enc

Input: Public key ��
 Plaintext * (length 256 bits)
 Random seed 7 (length 256 bits)

Output: Ciphertext /

1) Parse the public key as �� = ℎ ∈ ��.

2) Sample 8�, 8� ∈ �� deterministically using PRF with the seed 7, so that ���8�� + ���8�� = �.

3) Compute /� ≔ ℎ8� + 8� ∈ ��.

4) Compute F ≔ ��8� ∥ 8��.

5) Compute /� ≔ *⨁F.

The ciphertext is / ≔ �/�, /��.

7.1.5.3 BIKE.PKE.Dec

Input: Private key +�
 Ciphertext /

Output: Message *� (length 256 bits)

1) Parse the private key as +� = ��,�� and the ciphertext as / = �/�, /��.

2) Compute + ≔ /�� ∈ ��.

3) Decode + using � and � to recover 8�� and 8�� .

4) Compute F� ≔ �(8�� ∥ 8��).

5) Recover the plaintext by computing *� ≔ /�⨁F�.

NOTE: Step 3) computes the syndrome + = �8� + �8� corresponding to the error vector , = �8� 8�� and
parity-check matrix ! = �� ��. Step 4) recovers a candidate error vector ,� = �8�� 8��� from the
syndrome + using the Black-Gray-Flip decoder.

7.1.6 Key encapsulation mechanism

7.1.6.1 BIKE.KEM.KeyGen

Input: None

Output: Public key ��
 Augmented private key +�

1) Sample a uniformly random 256-bit private value -.

2) Call BIKE.PKE.KeyGen() to generate a public key �� and corresponding private key +��.

The public key is ��. The augmented private key is +� ≔ �+��, ��, -�.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 34

7.1.6.2 BIKE.KEM.Enc

Input: Public key ��

Output: Ciphertext c
 Session key 0 (length 256 bits)

1) Sample a uniformly random 256-bit plaintext *.

2) Encrypt / ≔ BIKE.PKE.Enc���,*,*�.

3) Derive the session key 0 ≔ KDF�* ∥ /�.

The ciphertext is /. The session key is 0.

NOTE: In Step 2), in the call to BIKE.PKE.Enc, the message is used as the random seed.

7.1.6.3 BIKE.KEM.Dec

Input: Augmented private key +�
 Ciphertext /

Output: Session key 0 (length 256 bits)

1) Parse the private key as +� = �+��, ��, -�.

2) Decrypt *� ≔ BIKE.PKE.Dec�+��, /�.

3) Re-encrypt /� ≔ BIKE.PKE.Enc���,*�,*��.

4) If /� = /, then derive the session key 0 ≔ KDF�*� ∥ /�.

5) Otherwise, derive a random key 0 ≔ KDF�- ∥ /�.

NOTE: The BIKE submission does not perform a full re-encyption check. Instead, it checks that the candidate
error vector ,′ = �8�� 8��� recovered in step 4) of BIKE.PKE.Dec matches the error vector , = �8� 8��
derived from *� in step 2) of BIKE.PKE.Enc. This is sufficient to guarantee that the ciphertexts / and /�
will match with overwhelming probability.

7.1.7 Parameter sets

The BIKE submission includes the parameter sets shown in Table 22.

Table 22: Proposed parameters for BIKE

Set � � � Failure probability Claimed security
Level 1 12 323 142 134 2-128 Category 1
Level 3 24 659 206 199 2-192 Category 3
Level 5 40 973 274 264 2-256 Category 5

These parameter sets lead to the public key, private key and ciphertext sizes shown in Table 23.

Table 23: BIKE public key, private key, and ciphertext sizes

Set Public key
(bytes)

Private key
(bytes)

Ciphertext
(bytes)

Level 1 1 541 281 1 573
Level 3 3 083 419 3 115
Level 5 5 122 580 5 154

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 35

7.1.8 Security

The security of BIKE depends on the difficulty of finding a moderate-weight codeword or decoding a syndrome with a
moderate-weight error. In both cases, the best attacks involve information set decoding, and target multiple codewords
or errors of the same weight obtained from the quasi-cyclic structure; see Annex C for more information. The BIKE
submission does not include explicit security costings, so Table 24 shows estimated costs for each parameter set for the
classical security of key and message recovery, derived using the methodology described in Annex C.

Table 24: Classical security estimates for BIKE

Set Key recovery
(bits)

Message recovery
(bits)

Level 1 128 127
Level 3 191 191
Level 5 258 256

BIKE.KEM has a tight proof of security in the ROM that it is CCA-secure, based on the hardness of the quasi-cyclic
syndrome decoding and quasi-cyclic codeword finding problems, and provided that the decoding failure rate is
sufficiently low. The tight proof of security remains valid in the QROM. However, the decoding failure rates for the
BIKE parameters shown in Table 22 are estimates based on simulation and extrapolation rather than rigorous upper
bounds. Consequently, the BIKE submission only claims CPA security for BIKE.KEM.

7.1.9 Performance

The BIKE submission includes performance figures for an AVX2-optimized implementation run on a single core of a
1,3 GHz Intel® Core™ i7-1065G7 processor. The performance figures for the Level 1 and Level 3 parameter sets are
shown in Table 25. The submission does not include performance figures for the Level 5 parameter set.

Table 25: BIKE performance figures

Set BIKE.KEM.KeyGen
(cycles)

BIKE.KEM.Enc
(cycles)

BIKE.KEM.Dec
(cycles)

Level 1 600 000 220 000 2 220 000
Level 3 1 780 000 465 000 6 610 000

7.2 FrodoKEM

7.2.1 Overview

FrodoKEM consists of a CPA-secure PKE scheme that is converted into a CCA-secure KEM using a variant of the
Fujisaki-Okamoto transform from [i.16]. FrodoKEM's security is based on the Learning With Errors (LWE) problem.

Let � and
 be positive integers, and � be a distribution over ℤ. For a fixed, private 3 ∈ ℤ�
�, a sample from the LWE

distribution H�,� is obtained by sampling � ∈ ℤ�
� uniformly at random, sampling an integer error 8 ∈ ℤ from the

distribution �, and outputting the pair ��, ⟨�, 3⟩ + 8mod
� ∈ ℤ�
� × ℤ�. In FrodoKEM, the coefficients for all vectors

are sampled from a symmetric distribution on ℤ, centred at 0, with small support, which approximates a rounded
continuous Gaussian distribution. The LWE problem asserts that it is computationally hard to distinguish LWE samples
of the form ��, ⟨�, 3⟩ + 8� from pairs of the form ��,F�, where F is a uniformly random element of ℤ�.

The submission makes it clear that FrodoKEM is defined as a CCA-secure KEM only, and that the underlying PKE
scheme is a building block that is not intended as a separate submission to the NIST standardization process.

7.2.2 Parameters

The main parameters for FrodoKEM are:

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 36

• �,*, integer matrix dimensions;

•
 = 2� , a power-of-two modulus with exponent K ≤ 16;

• �, a probability distribution over ℤ;

• � ≤ K, the number of bits encoded in each matrix entry; and

• ℓ = � ⋅ *�, the length of seeds, messages, and session keys.

For all FrodoKEM parameter sets * ≔ 8.

7.2.3 Auxiliary primitives

FrodoKEM makes use of several auxiliary, symmetric primitives:

• G, a 2ℓ-bit cryptographic hash function;

• �, an ℓ-bit cryptographic hash function;

• KDF, a key derivation function;

• PRF, a pseudorandom function; and

• XOF, an extendable output function.

The submission describes how to use SHAKE-128 or SHAKE-256 to instantiate �, �, KDF, and PRF, depending on
the parameter set being used. XOF can be instantiated using either AES-128 or SHAKE-128.

FrodoKEM also makes use of the following two functions:

• Encode maps a bit string of length ℓ to a matrix in ℤ�

×
; and

• Decode extracts a bit string of length ℓ from a matrix in ℤ�

×
.

7.2.4 Public-key encryption scheme

7.2.4.1 Frodo.PKE.KeyGen

Input: None

Output: Public key ��
 Private key +�

1) Sample a uniformly random 128-bit seed 5�.

2) Expand the seed 5� using XOF to produce the public matrix 2 ∈ ℤ�
�×�.

3) Sample a uniformly random ℓ-bit seed 5�.

4) Sample L�,M� ∈ ℤ�
�×
 deterministically from � using PRF with the seed 5�.

5) Compute N ≔ 2L� + M� ∈ ℤ�
�×
.

The public key is �� ≔ �N,5��. The private key is +� ≔ L�.

7.2.4.2 Frodo.PKE.Enc

Input: Public key ��
 Plaintext * (length ℓ bits)
 Random seed 7 (length ℓ bits)

Output: Ciphertext /

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 37

1) Parse the public key as �� = �N,5��.

2) Expand the seed 5� using XOF to produce the public matrix 2 ∈ ℤ�
�×�.

3) Sample L�,M� ∈ ℤ�

×� and M� ∈ ℤ�

×
 from � deterministically using PRF with the seed 7.

4) Compute O ≔ L�2 + M� ∈ ℤ�

×�.

5) Compute P ≔ L�N + M� + Encode�*� ∈ ℤ�

×
.

The ciphertext is / ≔ �O,P�.

7.2.4.3 Frodo.PKE.Dec

Input: Private key +�
 Ciphertext /

Output: Plaintext * (length ℓ bits)

1) Parse the private key as +� = L� and the ciphertext as / = �O,P�.

2) Compute P� ≔ P − OL� ∈ ℤ�

×
.

3) Recover the plaintext by computing * ≔ Decode�P��.

7.2.5 Key encapsulation mechanism

7.2.5.1 Frodo.KEM.KeyGen

Input: None

Output: Public key ��
 Augmented private key +�

1) Sample a uniformly random ℓ-bit value -.

2) Call FrodoPKE.KeyGen() to generate a public key �� and corresponding private key +��.

The public key is ��. The augmented private key is +� ≔ �+��, ��, -).

7.2.5.2 Frodo.KEM.Enc

Input: Public key ��

Output: Ciphertext /
 Session key 0 (length ℓ bits)

1) Sample a uniformly random ℓ-bit message *.

2) Derive two ℓ-bit seeds � and 7 by computing � ∥ 7 ≔ �(* ∥ �(��)).

3) Encrypt / ≔ Frodo.PKE.Enc���,*, 7�.

4) Derive the session key 0 ≔ KDF�� ∥ /�.

The ciphertext is /. The session key is 0.

7.2.5.3 Frodo.KEM.Dec

Input: Augmented private key +�
 Ciphertext /

Output: Session key 0 (length ℓ bits)

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 38

1) Parse the private key as +� = �+��, ��, -�.

2) Decrypt *′ ≔ Frodo.PKE.Dec�+��, /�.

3) Derive two ℓ-bit seeds �′ and 7′ by computing �� ∥ 7� ≔ �(*′ ∥ �(��)).

4) Re-encrypt /� ≔ Frodo.PKE.Enc���,*�, 7��.

5) If /� = /, then derive the session key 0 ≔ KDF��′ ∥ /�.

6) Otherwise, derive a random key 0 ≔ KDF�z ∥ ��.

7.2.6 Parameter sets

The FrodoKEM submission includes the parameter sets shown in Table 26.

Table 26: Proposed parameters for FrodoKEM

Set � � �
Support of

� �
Failure

probability
Claimed
security

Frodo-640 640 8 2�� �−12 … 12� 2 2����,� Category 1
Frodo-976 976 8 2�� �−10 … 10� 3 2����,� Category 3

Frodo-1344 1 344 8 2�� �−6 … 6� 4 2�	�	,� Category 5

These parameter sets lead to the public key, private key, and ciphertext sizes shown in Table 27.

Table 27: FrodoKEM public key, private key, and ciphertext sizes

Set Public Key
(bytes)

Private Key
(bytes)

Ciphertext
(bytes)

Frodo-640 9 616 19 888 9 720
Frodo-976 15 632 31 296 15 744

Frodo-1344 21 520 43 088 21 632

7.2.7 Security

The main attacks considered are the primal and dual attacks described in Annex D. The attacks are costed using the
general-purpose core-SVP methodology described in Annex D. The costs for each parameter set are shown in Table 28.

Table 28: Core-SVP costings for FrodoKEM (primal attack only)

Set Classical core-SVP
(bits)

Quantum core-SVP
(bits)

Frodo-640 151 138
Frodo-976 216 197

Frodo-1344 282 256

The FrodoKEM submission claims that for a uniformly random public matrix �, Frodo.PKE has a tight proof of
security in the standard model that it is CPA-secure against classical and quantum adversaries, based on the
computational hardness of the LWE problem.

The submission claims that this result holds when � is generated from a seed, provided the pseudorandom generator is
modelled as an ideal cipher (when using AES-128) or as a random oracle (when using SHAKE-128).

The submission also claims that Frodo.KEM has:

• a tight proof of security in the ROM that it is CCA-secure based on the CPA security of Frodo.PKE; and

• a non-tight proof of security in the QROM that it is CCA-secure provided Frodo.PKE is OW-CPA-secure.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 39

7.2.8 Performance

The FrodoKEM submission includes performance figures for AVX2-optimized implementations run on a 3,4 GHz
Intel® Core™ i7-6700 processor. The implementations use either AES-128 or SHAKE-128 to instantiate XOF to
generate the public matrix �. The performance figures for each parameter set are shown in Table 29.

Table 29: FrodoKEM performance figures

Set Version Frodo.KEM.Keygen
(cycles)

Frodo.KEM.Enc
(cycles)

Frodo.KEM.Dec
(cycles)

Frodo-640
AES 1 384 000 1 861 000 1 751 000

SHAKE 4 022 000 4 440 000 4 325 00

Frodo-976
AES 2 896 000 3 563 000 3 399 000

SHAKE 8 579 000 9 302 000 9 143 000

Frodo-1344
AES 4 732 000 5 965 000 5 738 000

SHAKE 15 191 000 16 357 000 16 148 000

7.3 HQC

7.3.1 Overview

HQC is a CCA-secure KEM based on the difficulty of syndrome decoding for random quasi-cyclic codes.

Let �� denote the polynomial ring �� = ℤ����/(�� + 1) for a prime �. A quasi-cyclic parity-check matrix 	 ∈ ��
�×�

defines quasi-cyclic code
 = � � ∈ ��
�×� | 	�� = 0} of length �� and rank �. The syndrome corresponding to an error

vector � ∈ ��
�×� of weight � is the element � = 	�� ∈ ��. Recovering the weight � error from a syndrome � and

parity-check matrix 	 is believed to be computationally hard for random quasi-cyclic codes. Similarly, distinguishing a
syndrome � corresponding to a weight � error from a uniformly random element of �� is also believed to be
computationally hard.

HQC uses a variant of the Fujisaki-Okamoto transform from [i.16] to convert a CPA-secure PKE into a CCA-secure
KEM. CCA security relies on the probability of a decoding failure being sufficiently low. HQC plaintexts are encoded
using an auxiliary error correcting code that reduces the decoding failure rate and allows a theoretical bound to be
calculated. Consequently, the HQC submission claims that HQC.KEM is CCA-secure for the proposed parameter sets.

7.3.2 Parameters

The main parameters for HQC are:

• �, the degree of the polynomial ring ��;

• �, the weight of the private polynomials in key generation;

• �, the weight of the private polynomials in encryption and encapsulation;

• ��, the length of the auxiliary error correcting code; and

• �, the rank of the auxiliary error correction code.

The degree � is chosen to be a prime where the only irreducible factors of �� + 1 over the field ℤ� are � + 1 and
���� + ⋯ + � + 1.

NOTE: Where necessary, a weight function, denoted ��(�), which returns the weight of the input polynomial �,
is used to clarify certain requirements in the algorithm descriptions.

7.3.3 Auxiliary error correction

HQC encodes plaintexts using an auxiliary error correcting code of length �′ and rank � that can efficiently correct at
least � errors. The auxiliary code is fixed for each parameter set and forms part of the public parameters for the scheme.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 40

The third round submission specifies a concatenated code with a duplicated Reed-Muller code for the internal code, and
a shortened Reed-Solomon code for the external code. Previous versions of HQC used different auxiliary codes.

The function Encode takes a �-bit plaintext as input and returns the corresponding codeword of length ��. The function
Decode takes a codeword of length �′ as input and returns a candidate �-bit plaintext �′. Decoding will recover the
correct plaintext provided the input contains at most � errors, otherwise it will fail.

NOTE: The description of HQC given in the present clause assumes that the decoding algorithm always returns a
plaintext, even if it is incorrect.

7.3.4 Auxiliary primitives

HQC makes use of several auxiliary, symmetric primitives:

• �, a 512-bit cryptographic hash function;

• �, a 512-bit cryptographic hash function;

• KDF, a key derivation function; and

• PRF, a pseudorandom function.

The submission describes how to instantiate � using SHA3-512, and � using SHA-512. It does not give explicit
instantiations for KDF or PRF, but the reference implementation included with the submission uses SHA-512 for KDF
and AES-256 in counter mode for PRF.

7.3.5 Public-key encryption scheme

7.3.5.1 HQC.PKE.KeyGen

Input: None

Output: Public key ��
 Private key ��

1) Sample a uniformly random public element � ∈ ��.

2) Sample uniformly random ��, �� ∈ �� so that ������ = ������ = �.

3) Compute � ≔ ��� + �� ∈ ��.

The public key is �� ≔ (�, �). The private key is �� ≔ ��.

NOTE 1: The submission suggests that the public key can be compressed by sampling � deterministically using
PRF with a 320-bit seed.

NOTE 2: The submission suggests that the private key can be compressed by sampling �� and �� deterministically
using PRF with a 320-bit seed.

7.3.5.2 HQC.PKE.Enc

Input: Public key ��
 Plaintext � (length � bits)
 Random seed � (length 512 bits)

Output: Ciphertext �

1) Parse the public key as �� = (�, �).

2) Sample ��, ��, �� ∈ �� deterministically using PRF with the seed �, so that ������ = ������ = ������ = �.

3) Compute the public element �� ≔ ��� + �� ∈ ��.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 41

4) Compute �� ≔ ��� + �� + Encode��� ∈ ��.

The ciphertext is � ≔ (��, ��).

NOTE: The plaintext � is encoded as a vector of length �′ where �� < �. The submission suggests compressing
the second component �� of the ciphertext slightly by dropping the final � − �′ entries.

7.3.5.3 HQC.PKE.Dec

Input: Private key ��
 Ciphertext �

Output: Plaintext � (length � bits)

1) Parse the private key as �� = �� and the ciphertext as � = (��, ��).

2) Compute ≔ �� − ���� ∈ ��.

3) Recover the plaintext by computing � ≔ Decode().

7.3.6 Key encapsulation mechanism

7.3.6.1 HQC.KEM.KeyGen

This is identical to HQC.PKE.KeyGen.

7.3.6.2 HQC.KEM.Enc

Input: Public key ��

Output: Ciphertext ��
 Session key ! (length 512 bits)

1) Sample a uniformly random �-bit plaintext �.

2) Encrypt (��, ��) ≔ HQC.PKE.Enc(��,�,�(�)).

3) Compute �� ≔ �(�).

4) Derive the session key ! ≔ KDF(� ∥ �� ∥ ��).

The ciphertext is � ≔ (��, ��, ��). The session key is !.

7.3.6.3 HQC.KEM.Dec

Input: Ciphertext �
 Private key ��

Output: Session key ! (length 512 bits),
 or ⊥

1) Parse the ciphertext as � = (��, ��, ��).

2) Decrypt �� ≔ HQC.PKE.Dec(��, (��, ��)).

3) Re-encrypt (��
� , ��

�) ≔ HQC.PKE.Enc���,��,�(��)�.

4) Recompute ��
� ≔ �(��).

5) If ���
� , ��

� , ��
� � = (��, ��, ��), then derive the session key ! ≔ KDF(�� ∥ �� ∥ ��).

6) Otherwise, return ⊥.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 42

7.3.7 Parameter sets

The HQC submission includes the parameter sets shown in Table 30.

Table 30: Proposed parameters for HQC

Set � � 	 �′
 Failure probability Claimed security
hqc-128 17 669 66 75 17 664 128 2-128 Category 1
hqc-192 35 851 100 114 35 840 192 2-192 Category 3
hqc-256 57 637 131 149 57 600 256 2-256 Category 5

These parameter sets lead to the public key, private key and ciphertext sizes shown in Table 31.

Table 31: HQC public key, private key, and ciphertext sizes

Set Public key
(bytes)

Private key
(bytes)

Ciphertext
(bytes) Comments

hqc-128 4 418 2 209 4 481 NOTE 1
hqc-192 8 964 4 482 9 026 NOTE 2
hqc-256 14 410 7 205 14 469 NOTE 3

NOTE 1: The compressed private key is 40 bytes and compressed public key is 2 249 bytes.
NOTE 2: The compressed private key is 40 bytes and compressed public key is 4 522 bytes.
NOTE 3: The compressed private key is 40 bytes and compressed public key is 7 245 bytes.

7.3.8 Security

The security of HQC depends on the difficulty of syndrome decoding in random quasi-cyclic codes. The best attacks
involve information set decoding, and target multiple codewords or errors of the same weight obtained from the quasi-
cyclic structure; see Annex C for more information. The HQC submission does not include explicit security costings, so
Table 32 shows estimated costs for each parameter set for the classical security of key and message recovery, derived
using the methodology described in Annex C.

Table 32: Classical security estimates for HQC

Set Key recovery
(bits)

Message recovery
(bits)

hqc-128 132 132
hqc-192 200 200
hqc-256 262 261

The provable security of HQC depends on variants of the decisional quasi-cyclic syndrome decoding problem. Public
keys of the form (�, �) can be distinguished from random as the parity of � is completely determined by the parity of �
and the weight � of the private key elements. Further, the component �� of the ciphertext does not correspond to a full
syndrome as the final entries are dropped. Consequently, HQC.PKE is CPA-secure in the ROM based on the
computational hardness of the decisional quasi-cyclic syndrome decoding problem with fixed parity and erasures.

The submission claims that the conversion of the CPA-secure HQC.PKE into the CCA-secure HQC.KEM is tight, but
only holds in the ROM. The choice of auxiliary code allows a theoretical upper bound for the decoding failure rate to be
calculated. Consequently, the submission claims that HQC.KEM is CCA-secure for the proposed parameter sets.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 43

7.3.9 Performance

The HQC submission includes performance figures for an AVX2-optimized implementation run on a 3,6 GHz Intel®
Core™ i7-7820X processor. The performance figures for each parameter set are shown in Table 33.

Table 33: HQC performance figures

Set HQC.KEM.KeyGen
(cycles)

HQC.KEM.Enc
(cycles)

HQC.KEM.Dec
(cycles)

hqc-128 136 000 220 000 384 000
hqc-192 305 000 501 000 821 000
hqc-256 545 000 918 000 1 538 000

7.4 NTRU Prime

7.4.1 Overview

Let � denote the polynomial ring (ℤ[�])/(�� − � − 1), and �	 denote the polynomial ring (ℤ	[�])/(�� − � − 1),
where � and " are primes chosen so that �� − � − 1 is irreducible modulo ". This means that �	 is a prime degree
extension field of #	.

The NTRU Prime submission describes two related but separate schemes:

• Streamlined NTRU Prime, which consists of a CPA-secure PKE scheme based on NTRU with rounding over
the field �	 that is converted into a CCA-secure KEM; and

• NTRU LPRime, which consists of a CPA-secure PKE scheme based on Ring Learning With Rounding
(RLWR) over the field �	 that is converted into a CCA-secure KEM.

Both Streamlined NTRU Prime and NTRU LPRime use a variant of the Fujisaki-Okamoto transform from [i.16] that
includes an additional confirmation hash.

The submission makes it clear that Streamlined NTRU Prime and NTRU LPRime are defined as CCA-secure KEMs
only, and that the underlying PKE schemes are building blocks that are not intended as separate submissions to the
NIST standardization process.

NOTE: Streamlined NTRU Prime is abbreviated to SNTRUP, and NTRU LPRime is abbreviated to NTRULPR.

7.4.2 Parameters

The main parameters for NTRU Prime are:

• �, the degree of the polynomial ring �	;

• ", the modulus of the polynomial ring �	; and

• �, the weight of the ternary polynomials in key generation and encryption.

A polynomial in � is said to be ternary if its coefficients all lie in {−1,0,1}.

The modulus " and degree � are primes chosen so that �� − � − 1 is irreducible modulo ". The weight � is chosen to
ensure that NTRU Prime is not susceptible to decryption failures.

7.4.3 Auxiliary primitives

NTRU Prime makes use of the following auxiliary, symmetric primitives:

• �, a 256-bit cryptographic hash function;

• KDF, a key derivation function; and

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 44

• XOF, an extendable output function.

The submission describes how to use SHA-2 and AES to instantiate these primitives, as shown in Table 34.

Table 34: Auxiliary symmetric primitives for NTRU Prime

Primitive Instantiation
� SHA-512, output truncated to 256 bits

KDF SHA-512, output truncated to 256 bits
XOF AES-256 in counter mode

Streamlined NTRU Prime and NTRU LPRime use a function Round:�	 ⟶ 3� which converts each coefficient of the
input polynomial to {−�" − 1�/2, … , �" − 1�/2} and then rounds it to the nearest multiple of 3.

NTRU LPRime uses functions Compress:�	 ⟶ ��
 and Decompress:��
 ⟶ �	 related to modulus switching in
order to reduce the size of the ciphertext.

NTRU LPRime also uses a hash function �: �0,1$��
 ⟶ � that maps 256-bit values to ternary polynomials in � of
weight �. This is built from � and XOF.

7.4.4 Streamlined NTRU Prime public-key encryption scheme

7.4.4.1 SNTRUP.PKE.KeyGen

Input: None

Output: Public key ��
 Private key ��

1) Sample a uniformly random ternary polynomial % ∈ � that is invertible modulo 3.

2) Compute %′, the inverse of % modulo 3.

3) Sample a uniformly random ternary polynomial � ∈ � of weight �.

4) Compute ℎ ≔ % 3�⁄ in �	.

The public key is �� ≔ ℎ. The private key is �� ≔ (�,%′).

NOTE: The polynomial � in step 4) is a non-zero element of the field �	 so will always be invertible.

7.4.4.2 SNTRUP.PKE.Enc

Input: Public key ��
 Plaintext � (a ternary polynomial in � of weight �)

Output: Ciphertext �

1) Parse the public key as �� = ℎ.

2) Compute ℎ� in �	.

3) Compute � ≔ Round�ℎ��.

The ciphertext is �.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 45

7.4.4.3 SNTRUP.PKE.Dec

Input: Private key ��
 Ciphertext �

Output: Plaintext � (a ternary polynomial in � of weight �)

1) Parse the private key as �� = (�,%′).

2) Compute � ≔ 3�� in �	 and convert to a polynomial in � with coefficients in {−�" − 1�/2, … , �" − 1�/2}.

3) Compute � ≔ �%� mod 3.

4) Convert � to a ternary polynomial in �.

7.4.5 Streamlined NTRU Prime key encapsulation mechanism

7.4.5.1 SNTRUP.KEM.KeyGen

Input: None

Output: Public key ��
 Augmented private key ��

1) Sample a uniformly random ternary polynomial ' ∈ � of weight �.

2) Call SNTRUP.PKE.KeyGen() to generate a public key �� and corresponding private key ���.

The public key is ��. The augmented private key is �� ≔ ����, ��, '�.

7.4.5.2 SNTRUP.KEM.Enc

Input: Public key ��

Output: Ciphertext �
 Session key ! (length 256 bits)

1) Sample a uniformly random ternary polynomial � ∈ � of weight �.

2) Encrypt �� ≔ SNTRUP.PKE.Enc���,��.

3) Compute �� ≔ ��� ∥ ���.

4) Derive the session key ! ≔ KDF�1 ∥ � ∥ �� ∥ ���.

The ciphertext is � ≔ (��, ��). The session key is !.

7.4.5.3 SNTRUP.KEM.Dec

Input: Ciphertext �
 Augmented private key ��

Output: Session key ! (length 256 bits)

1) Parse the ciphertext as � = (��, ��) and the private key as �� = ����, ��, '�.

2) Decrypt �� ≔ SNTRUP.PKE.Dec����, ���.

3) Re-encrypt ��
� ≔ SNTRUP.PKE.Enc���,���.

4) Compute ��
� ≔ �(�� ∥ ��).

5) If ��
� = �� and ��

� = ��, then derive the session key ! ≔ KDF�1 ∥ �′ ∥ �� ∥ ���.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 46

6) Otherwise, derive a random key ! ≔ KDF�0 ∥ ' ∥ �� ∥ ���.

7.4.6 NTRU LPRime public-key encryption scheme

7.4.6.1 NTRULPR.PKE.KeyGen

Input: None

Output: Public key ��
 Private key ��

1) Sample a uniformly random 256-bit seed �.

2) Expand the seed � using XOF to produce the public polynomial � ∈ �	.

3) Sample a uniformly random ternary polynomial �� ∈ � of weight �.

4) Compute ��� in �	.

5) Compute � ≔ Round(���).

The public key is �� ≔ ��,��. The private key is �� ≔ ��.

7.4.6.2 NTRULPR.PKE.Enc

Input: Public key ��
 Plaintext � (length 256 bits)

Output: Ciphertext �

1) Parse the public key as �� = (�, �).

2) Expand the seed � using XOF to produce the public polynomial � ∈ �	.

3) Compute �� ≔ �(�).

4) Compute ��� in �	.

5) Compute the public polynomial (≔ Round(���).

6) Compute ≔ ��� in �	.

7) Encode the plaintext as an element) ∈ �	 by setting each coefficient)� to ���" − 1� 2⁄ .

8) Compute ≔ ��� +) ∈ �	.

9) Compute � ≔ Compress().

The ciphertext is � ≔ �(, ��.

7.4.6.3 NTRULPR.PKE.Dec

Input: Private key ��
 Ciphertext �

Output: Plaintext � (length 256 bits)

1) Parse the private key as �� = �� and the ciphertext as � = �(, ��.

2) Compute ≔ Decompress(�).

3) Compute (�� ∈ �	.

4) View each � − �(���� + 4� + 1 ∈ ℤ	 as an integer in {−(" − 1) 2⁄ , … , (" − 1) 2⁄ }.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 47

5) If � is negative, then set �� ≔ 1, otherwise set �� ≔ 0.

7.4.7 NTRU LPRime key encapsulation mechanism

7.4.7.1 NTRULPR.KEM.KeyGen

Input: None

Output: Public key ��
 Augmented private key ��

1) Sample a uniformly random 256-bit value '.

2) Call NTRULPR.PKE.KeyGen() to generate a public key �� and corresponding private key ���.

The public key is ��. The augmented private key is �� ≔ ����, ��, '�.

7.4.7.2 NTRULPR.KEM.Enc

Input: Public key ��

Output: Ciphertext �
 Session key ! (length 256 bits)

1) Sample a uniformly random 256-bit message �.

2) Encrypt �� ≔ NTRULPR.PKE.Enc���,��.

3) Compute �� ≔ ��� ∥ ���.

4) Derive the session key ! ≔ KDF�1 ∥ � ∥ �� ∥ ���.

The ciphertext is � ≔ (��, ��). The session key is !.

7.4.7.3 NTRULPR.KEM.Dec

Input: Ciphertext �
 Augmented private key ��

Output: Session key ! (length 256 bits)

1) Parse the ciphertext as � = (��, ��) and the private key as �� = ����, ��, '�.

2) Decrypt �� ≔ NTRULPR.PKE.Dec����, ���.

3) Re-encrypt ��
� ≔ NTRULPR.PKE.Enc���,���.

4) Compute ��
� ≔ ���′ ∥ ���.

5) If ��
� = �� and ��

� = ��, then derive the session key ! ≔ KDF�1 ∥ �′ ∥ �� ∥ ���.

6) Otherwise, derive a random key ! ≔ KDF�0 ∥ ' ∥ �� ∥ ���.

7.4.8 Parameter sets

The NTRU Prime submission includes the parameter sets for Streamlined NTRU Prime shown in Table 35 and for
NTRU LPRime shown in Table 36.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 48

Table 35: Proposed parameters for Streamlined NTRU Prime

Set � � � Claimed security
sntrup653 653 4 621 288 Category 1
sntrup761 761 4 591 286 Category 2
sntrup857 857 5 167 322 Category 3
sntrup953 953 6 343 396 Category 4
sntrup1013 1 013 7 177 448 Category 4
sntrup1277 1 277 7 879 492 Category 5

Table 36: Proposed parameters for NTRU LPRime

Set � � � Claimed security
ntrulpr653 653 4 621 252 Category 1
ntrulpr761 761 4 591 250 Category 2
ntrulpr857 857 5 167 281 Category 3
ntrulpr953 953 6 343 345 Category 4
ntrulpr1013 1 013 7 177 392 Category 4
ntrulpr1277 1 277 7 879 429 Category 5

These parameter sets lead to the public key, private key, and ciphertext sizes for Streamlined NTRU Prime shown in
Table 37 and for NTRU LPRime shown in Table 38.

Table 37: Streamlined NTRU Prime public key, private key, and ciphertext sizes

Set Public Key
(bytes)

Private Key
(bytes)

Ciphertext
(bytes)

sntrup653 994 1 518 897
sntrup761 1 158 1 763 1 039
sntrup857 1 322 1 999 1 184
sntrup953 1 505 2 254 1 349

sntrup1013 1 623 2 417 1 455
sntrup1277 2 067 3 059 1 847

Table 38: NTRU LPRime public key, private key, and ciphertext sizes

Set Public Key
(bytes)

Private Key
(bytes)

Ciphertext
(bytes)

ntrulpr653 897 1 125 1 025
ntrulpr761 1 039 1 294 1 167
ntrulpr857 1 184 1 463 1 312
ntrulpr953 1 349 1 652 1 477

ntrulpr1013 1 455 1 773 1 583
ntrulpr1277 1 847 2 231 1 975

7.4.9 Security

The main attacks considered are the hybrid and meet-in-the-middle attacks mentioned in Annex D. The security of
NTRU Prime depends on the difficulty of finding lattice vectors that are short or close to a particular target vector in
certain algebraically structured lattices. However, because it is not known how to exploit this algebraic structure, the
attacks are costed using the general-purpose core-SVP methodology described in Annex D. The costs for each
parameter set for Streamlined NTRU Prime are shown in Table 39. The costs for each parameter set for NTRU LPRime
are shown in Table 40.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 49

Table 39: Core-SVP costings for Streamlined NTRU Prime (hybrid attack)

Set Classical core-SVP
(bits)

Quantum core-SVP
(bits)

sntrup653 129 117
sntrup761 153 139
sntrup857 175 159
sntrup953 196 178

sntrup1013 209 190
sntrup1277 270 245

Table 40: Core-SVP costings for NTRU LPRime (hybrid attack)

Set Classical core-SVP
(bits)

Quantum core-SVP
(bits)

ntrulpr653 130 118
ntrulpr761 155 140
ntrulpr857 176 160
ntrulpr953 197 178

ntrulpr1013 210 190
ntrulpr1277 271 245

7.4.10 Performance

The NTRU Prime submission includes performance figures for optimized implementations of Streamlined NTRU Prime
and NTRU LPRime run on a single core of a 3,5 GHz Intel® Xeon® E3-1275 processor. Table 41 shows the
performance figures for Streamlined NTRU Prime with the sntrup761 parameter set. Table 42 shows the performance
figures for NTRU LPRime with the ntrulpr761 parameter set.

Table 41: Streamlined NTRU Prime performance figures

Set
NTRULPR.KEM.Keyge

n
(cycles)

NTRULPR.KEM.En
c

(cycles)

NTRULPR.KEM.De
c

(cycles)
sntrup761 809 348 48 780 59 288

Table 42: NTRU LPRime performance figures

Set SNTRUP.KEM.Keygen
(cycles)

SNTRUP.KEM.Enc
(cycles)

SNTRUP.KEM.Dec
(cycles)

ntrulpr761 44 540 72 388 86 976

7.5 SIKE

7.5.1 Overview

SIKE consists of a CPA-secure PKE scheme that is converted into a CCA-secure KEM using a variant of the
Fujisaki-Okamoto transform from [i.16]. The security of SIKE is based on the Supersingular Isogeny Diffie-Hellman
(SIDH) problem.

Let *� be a supersingular elliptic curve over #
� for a prime � of the form � = 2��3�� − 1 where:

• {+�,,�} is a pair of points of order 2�� on *� that generate the 2��-torsion subgroup; and

• {+�,,�} is a pair of points of order 3�� on *� that generate the 3��-torsion subgroup.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 50

Each � ∈ �0, … , 2�� − 1$ gives a degree 2�� isogeny -�:*� ⟶ *� with kernel +� + [�],� and each � ∈ �0, … , 3�� − 1$
gives a degree 3�� isogeny -�:*� ⟶ *� with kernel +� + [�],�. The corresponding isogenies -�

� :*� ⟶ * with kernel
-��+�� + [�]-�(,�) and -�

� :*� ⟶ *′ with kernel -��+�� + [�]-�(,�) produce isomorphic curves * ≅ *′. This
means that their .-invariants will be the same. The SIDH problem is to recover the .-invariant for * given the curves
�,�,*�, the points +�,,�,+�,,� on *�, the points -�(+�), -�(,�) on *�, and the points -�(+�), -�(,�) on *�.

7.5.2 Parameters

The main parameters for SIKE are:

• �� and ��, positive integers specifying a prime � = 2��3�� − 1; and

• ℓ, the length of messages and session keys in bits.

The parameters for SIKE also include a starting curve *� over #
�, a pair of points {+�,,�} of order 2�� on *�, and a
pair of points �+�,,�$ of order 3�� on *�. The starting curve is chosen to be:

 *�: /� = 0� + 60� + 0

for all SIKE parameter sets.

7.5.3 Auxiliary primitives

SIKE makes use of several auxiliary, symmetric primitives:

• �, an ℓ-bit cryptographic hash function;

• KDF, a key derivation function; and

• XOF, an extendable output function.

The submission describes how to use SHAKE-256 to instantiate these primitives.

7.5.4 Public-key encryption scheme

7.5.4.1 SIKE.PKE.KeyGen

Input: None

Output: Public key ��
 Private key ��

1) Sample a uniformly random value 0 in the range �0, … , 2� − 1$ where � = ⌊log� 3��⌋.

2) Let -�:*� ⟶ *� be the isogeny corresponding to the point +� + [0],� on the curve *�.

3) Compute the points +�
� ≔ -�(+�) and ,�

� ≔ -�(,�) on the curve *�.

The public key is �� ≔ (*�,+�
�,,�

�). The private key is �� ≔ 0.

NOTE 1: The SIKE submission represents the public key by the x-coordinates of the points +�
�, ,�

� and +�
� − ,�

� .

NOTE 2: The submission also includes a compressed version of SIKE that reduces the size of the public key using
techniques from [i.29] and [i.30].

7.5.4.2 SIKE.PKE.Enc

Input: Public key ��
 Plaintext � (length ℓ bits)
 Random seed � (length �� bits)

Output: Ciphertext �

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 51

1) Parse the public key as �� = (*�,+�
� ,,�

�).

2) Let -�:*� ⟶ *� be the isogeny corresponding to the point +� + [�],� on the curve *�.

3) Compute the points +�
� ≔ -�(+�) and ,�

� ≔ -�(,�) on the curve *�.

4) Set �� ≔ (*�,+�
� ,,�

�).

5) Let -�
� :*� ⟶ * be the isogeny corresponding to the point +�

� + [�],�
� on the curve *�.

6) Compute the .-invariant . of the curve *.

7) Compute ℎ ≔ ��.�.

8) Compute �� = ℎ ⊕ �.

The ciphertext is � ≔ ���, ���.

NOTE 1: The SIKE submission represents the first component �� of the ciphertext by the 0-coordinates of the
points +�

�, ,�
� and +�

� − ,�
� .

NOTE 2: The submission also includes a compressed version of SIKE that reduces the size of the ciphertext using
techniques from [i.29] and [i.30].

7.5.4.3 SIKE.PKE.Dec

Input: Private key ��
 Ciphertext �

Output: Plaintext � (length ℓ bits)

1) Parse the private key as �� = 0 and the ciphertext as � = ���, ���.

2) Parse �� = (*�,+�
� ,,�

�).

3) Let -�
� :*� ⟶ *′ be the isogeny corresponding to the point +�

� + [0],�
� on the curve *�.

4) Compute the .-invariant . of the curve *′.

5) Compute ℎ ≔ ��.�.

6) Recover the plaintext by computing � ≔ ℎ ⊕ ��.

7.5.5 Key encapsulation mechanism

7.5.5.1 SIKE.KEM.KeyGen

Input: None

Output: Public key ��
 Augmented private key ��

1) Sample a uniformly random ℓ-bit value '.

2) Call SIKE.PKE.KeyGen() to generate a public key �� and corresponding private key ���.

The public key is ��. The augmented private key is �� ≔ ����, ��, '�.

7.5.5.2 SIKE.KEM.Enc

Input: Public key ��

Output: Ciphertext �
 Session key ! (length ℓ bits)

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 52

1) Sample a uniformly random ℓ-bit message �.

2) Derive an ��-bit value � from � and �� using XOF.

3) Encrypt � ≔ SIKE.PKE.Enc���,�, ��.

4) Derive the session key ! ≔ KDF�� ∥ ��.

The ciphertext is �. The session key is !.

7.5.5.3 SIKE.KEM.Dec

Input: Augmented private key ��
 Ciphertext �

Output: Session key ! (length ℓ bits)

1) Parse the private key as �� = (���, ��, ').

2) Decrypt �� ≔ SIKE.PKE.Dec���′, ��.

3) Derive an ��-bit value �′ from �′ and �� using XOF.

4) Re-encrypt �′ ≔ SIKE.PKE.Enc���,�′, �′�.

5) If �′ = � then derive the session key ! ≔ KDF��′ ∥ ��.

6) Otherwise, derive a random key ! ≔ KDF�' ∥ ��.

NOTE: The SIKE submission does not perform a full re-encryption check. Instead, it checks that the first
component ��

� of the ciphertext recomputed in steps 1) to 4) of SIKE.PKE.Enc matches the first
component �� of the provided ciphertext �. This is sufficient to guarantee that the full ciphertexts �′ and �
will match.

7.5.6 Parameter sets

The SIKE submission includes the parameter sets shown in Table 43.

Table 43: Proposed parameters for SIKE

Set �
 ��
 Claimed security
SIKEp434 216 137 128 Category 1
SIKEp503 250 159 192 Category 2
SIKEp610 305 192 192 Category 3
SIKEp751 372 239 256 Category 5

Each parameter set is given in a regular form and in a compressed form. These parameter sets lead to the public key,
private key, and ciphertext sizes as shown in Table 44.

Table 44: SIKE public key, private key, and ciphertext sizes

Set Version Public key
(bytes)

Private key
(bytes)

Ciphertext
(bytes)

SIKEp434
Regular 330 374 346

Compressed 197 350 236

SIKEp503
Regular 378 434 402

Compressed 225 407 280

SIKEp610
Regular 462 524 486

Compressed 274 491 336

SIKEp751
Regular 564 644 596

Compressed 335 602 410

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 53

7.5.7 Security

The security of SIKE depends on the difficulty of recovering a private isogeny. Generic meet-in-the-middle attacks
require 3(��/�) work and 3(��/�) memory. The SIKE submission argues that the most relevant classical attack is the
parallel collision-finding algorithm of van Oorschot and Wiener. Table 45 gives estimates for the classical cost of
parallel collision-finding (in gates) when the memory is restricted to 2�
 bits.

Table 45: Classical security estimates for SIKE

Set Classical gates
SIKEp434 2142
SIKEp503 2169
SIKEp610 2209
SIKEp751 2263

Tani's quantum claw-finding algorithm recovers the private isogenies with a query complexity of 3("�/
). However,
the SIKE submission argues that classical parallel collision-finding requires fewer resources than quantum claw-finding
when the circuit depth is restricted and quantum memory costs are taken into account. Table 46 gives estimates for the
quantum cost of claw-finding with a maximum circuit depth of 2
� or 2�
.

Table 46: Quantum security estimates for SIKE

Set
Quantum gates

Maximum circuit
depth of 264

Maximum circuit
depth of 296

SIKEp434 2175 2143
SIKEp503 2210 2178
SIKEp610 2264 2232
SIKEp751 2336 2304

The SIKE submission claims that SIKE.PKE is CPA-secure in the ROM based on the computational hardness of the
SIDH problem, and that SIKE.KEM is CCA-secure in the ROM based on the CPA-security of SIKE.PKE. The
submission notes that SIKE.PKE is CPA-secure in the standard model based on the hardness of a decisional variant of
the SIDH problem, though this does not extend to CCA security in the standard model for SIKE.KEM.

7.5.8 Performance

The SIKE submission includes performance figures for an optimized implementation run on a 3,4 GHz Intel® Core™
i7-6700 processor. The performance figures for each parameter set are shown in Table 47.

Table 47: SIKE performance figures

Set Version SIKE.KEM.KeyGen
(cycles)

SIKE.KEM.Enc
(cycles)

SIKE.KEM.Dec
(cycles)

SIKEp434
Regular 5 927 000 9 681 000 10 343 000

Compressed 10 158 000 15 120 000 11 077 000

SIKEp503
Regular 8 243 000 13 544 000 14 415 000

Compressed 14 452 000 21 190 000 15 733 000

SIKEp610
Regular 14 890 000 27 254 000 27 445 000

Compressed 26 360 000 37 470 000 29 216 000

SIKEp751
Regular 25 197 000 40 703 000 43 851 000

Compressed 40 935 000 63 254 000 46 606 000

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 54

Annex A:
Proofs of security

A.1 Introduction
Proofs of security, also referred to as security reductions, usually involve showing that the ability of an adversary to
break the security of a cryptographic scheme would necessarily imply their ability to solve a related problem that is
believed to be computationally hard. Proofs of security can provide reassurance that cryptographic schemes are secure,
but they require careful interpretation.

A.2 Security models
To construct a proof of security it is necessary to specify what it means for the scheme of interest to be secure (and
hence what it would mean to break that scheme) and the values and computational resources assumed to be available to
an adversary. Examples of definitions of security include CPA and CCA security, as described in Annex B. The
definitions for PKE schemes are subtly different to the definitions for KEMs, and indeed to the definitions for
symmetric encryption schemes and modes of operation.

A.3 Computational resources
With respect to computational resources, it is expected than an adversary with access to a quantum computer will be
able to efficiently perform operations that are not available to an adversary that only has access to classical computers.
To model such an adversary it is important to account for properties of quantum computation such as the no-cloning
theorem; consequently, it is often necessary to construct different proofs for different models of computation. Proofs of
security usually allow adversaries to make educated guesses, so classical adversaries are restricted to probabilistic
polynomial-time algorithms, and quantum adversaries are restricted to quantum polynomial-time algorithms.

Proofs of security are usually quantified with respect to a security parameter, and usually involve asymptotic results.
More specifically, proofs of security are usually constructed to hold for large enough security parameters, which can
mean they do not hold for small parameters. Because asymptotic results tend to be non-constructive, it can be difficult
to determine how large the security parameter needs to be for a proof to hold, and it can be difficult to interpret what a
proof of security means if it only holds for parameters that are significantly larger than those used in practice.

A.4 Tightness
Using the terminology of complexity theory, a proof of security consists of a reduction from a target problem to the
problem of breaking the cryptosystem. This usually involves constructing an algorithm that uses an oracle that breaks
the cryptographic scheme as a subroutine to solve the target problem. The goal is to show that because the target
problem is computationally hard, it cannot be possible to instantiate the oracle with an efficient algorithm, and hence
that the cryptographic scheme is secure.

The efficiency and effectiveness of the reduction is important when interpreting a proof of security. If the algorithm that
uses the oracle has a similar running time and probability of success to the oracle, the proof is said to be tight. If the
algorithm requires significantly more time to run than the oracle, or has a significantly lower probability of success, or
both, the proof is said to have a tightness gap. A proof with a large tightness gap tells us relatively little about the
security of the cryptographic scheme of interest; depending on the size of the gap, in some cases it can be possible to
attack the scheme without solving the related hard problem.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 55

A.5 Worst-case to average-case reductions
It is also important to consider what assumptions are made about the intractability of the target problem. A security
proof that assumes that the target problem is hard on average provides a weaker result than a proof that assumes the
target problem is hard only in the worst case. A security proof that a cryptosystem is hard to attack on average, provided
the target problem is computationally hard in the worst case, is referred to as a worst-case to average-case reduction.

A.6 Random oracles
To construct some proofs of security it is necessary to make assumptions about or use idealized versions of certain
cryptographic primitives, such as ciphers and hash functions; this can mean the proof does not apply to a concrete
implementation. Proofs of security that avoid such assumptions are said to be constructed in the standard model.

In the Random Oracle Model (ROM) hash functions are modelled as ideal entities, referred to as random oracles, which
respond to new queries with responses selected uniformly at random from the output domain, and respond to previously
seen queries with whatever answer was given the first time the query was received.

In the ROM it is assumed that adversaries interact classically with random oracles, but in the Quantum Random Oracle
Model (QROM) it is assumed that adversaries can query a random oracle in a quantum superposition of
states. Although the QROM affords an adversary more computational power, it can be difficult to compare proofs in the
ROM to proofs in the QROM, particularly if it is possible to construct a tight proof in the ROM but not the QROM.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 56

Annex B:
Security properties

B.1 Introduction
The two main security goals that are relevant for PKE and KEMs are indistinguishability under chosen-plaintext, and
indistinguishability under chosen-ciphertext. Both security goals are usually modelled as games that take place between
an attacker and a challenger; the games are slightly different for public-key encryption than for key encapsulation.

B.2 Public-key encryption
The two security definitions for PKE schemes are:

• Chosen-Plaintext Attack (CPA) security for PKE. The challenger generates a key pair for some security
parameter and provides the public values to the attacker. The attacker can perform a polynomial (in the size of
the security parameter) number of operations, then submit a pair of plaintext messages of its choice to the
challenger. The challenger selects one of the messages uniformly at random, encrypts it using fresh random
values and returns the resulting ciphertext to the attacker. The goal of the attacker is to determine which of the
two messages the challenger encrypted. A PKE scheme is said to be indistinguishable under chosen-plaintext
attack, or CPA-secure, if every probabilistic polynomial time attacker has only a negligible (in the size of the
security parameter) advantage over random guessing.

• Chosen-Ciphertext Attack (CCA) security for PKE. The CCA game for public-key encryption is the same
as the CPA game described above, except the attacker is given access to a decryption oracle that it can query
with values of its choice. In the basic version, often referred to as CCA1 security, the attacker is only allowed
to use the decryption oracle prior to submitting its choice of messages to the challenger. In the adaptive case,
often referred to as CCA2 security, the attacker is allowed to use the decryption oracle before and after it
submits its choice of messages to the challenger, but it is not allowed to query the decryption oracle with the
ciphertext received from the challenger.

B.3 Key encapsulation
The two security definitions for KEMs are:

• Chosen-Plaintext Attack (CPA) security for KEMs. The challenger generates a key pair for some security
parameter and provides the public values to the attacker. The attacker can perform a polynomial (in the size of
the security parameter) number of operations, then request a challenge from the challenger. The challenger
calls the encapsulation routine, which returns a uniformly random key, !, and a ciphertext, which represents
the encapsulation of !. The challenger provides the attacker with the ciphertext, and either ! or a uniformly
random value, !�. The goal of the attacker is to determine whether it has been given ! or !�. A KEM is said
to be indistinguishable under chosen-plaintext attack, or CPA-secure, if every (probabilistic) polynomial time
attacker has only a negligible (in the size of the security parameter) advantage over random guessing.

• Chosen-Ciphertext Attack (CCA) security for KEMs. The CCA game for key encapsulation is the same as
the CPA game described above, except the attacker is given access to a decapsulation oracle that it can query
with values of its choice. In the basic version, often referred to as CCA1 security, the attacker is only allowed
to use the decapsulation oracle prior to requesting a challenge. In the adaptive case, often referred to as CCA2
security, the attacker is allowed to use the decapsulation oracle before and after it requests a challenge, but it is
not allowed to query the decapsulation oracle with the ciphertext received from the challenger.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 57

B.4 One-wayness
One-Wayness against Chosen-Plaintext Attack (OW-CPA) security captures a weaker notion of CPA security for PKE
schemes. The challenger provides the attacker with a ciphertext corresponding to the encryption of a message selected
uniformly at random from the space of all possible messages. The goal of the attacker is to recover the message from
the ciphertext. If a PKE scheme is CPA-secure then it is OW-CPA-secure, but the converse need not be true.

B.5 CPA to CCA transforms
CPA security, including OW-CPA security, is used to model passive attackers, which are usually thought of as third
parties that can observe messages exchanged between the sender and the recipient, who are both assumed to behave
honestly. CCA security is used to model active attackers, such as a malicious sender that constructs malformed
ciphertexts to learn information about the recipient's private key. Consequently, when using a CPA-secure PKE scheme
or KEM in the presence of active attackers, a recipient's private key can only be used securely once.

There are standard techniques available for converting a CPA-secure PKE scheme into a CCA-secure KEM, where
recipients can reuse their private keys even in the presence of active attackers. The most common approach is to use a
variant of the Fujisaki-Okamoto transform [i.15]. This usually involves the sender deriving the randomness required for
encryption from the value to be encrypted; note that this includes the randomness required for the sender to generate an
ephemeral key pair. The recipient can decrypt the received ciphertext, then use the resulting message to attempt to
rederive the randomness and reconstruct the ciphertext to check that the sender followed the protocol honestly.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 58

Annex C:
Code-based costing methodology

C.1 Introduction
Message recovery attacks against code-based PKE schemes and KEMs involve finding the codeword that is closest to a
target vector derived from the ciphertext. Key recovery attacks for QC-MDPC schemes involve finding non-zero
codewords of moderate weight. Estimates for the costs of both of these attacks usually assume that a variant of
information set decoding is used.

NOTE: Key recovery attacks for schemes that use binary Goppa codes rely on fundamentally different techniques
and are typically much more expensive than message recovery.

C.2 Information set decoding
Information set decoding algorithms take a parity-check matrix � ∈ #�

(���)×� and syndrome � ∈ #�
���, and recovers an

error vector � ∈ #�
� of target weight � such that � = ���. The simplest version of information set decoding by Prange

[i.21] performs the following loop:

1) Randomly permute the columns of � and row reduce to echelon form �4��� �′� where �′ ∈ #�
(���)×�.

2) Apply the same row operations to � to give a vector �′ ∈ #�
���, then set � = ��′ 0�� ∈ #�

� and reverse the
column permutation.

3) Start again if � does not have weight �.

The algorithm succeeds when the column permutation moves all � errors into the first � − � positions. More efficient
variants of information set decoding reduce the number of iterations by allowing some of the errors to occur in the final
� positions. However, each iteration is more expensive and can involve significant amounts of memory.

C.3 Asymptotic complexity
The asymptotic complexity of information set decoding depends on the rate of the code and the weight of the codeword
or error being recovered. Table C.1 is adapted from [i.18]. It gives worst-case complexities for full decoding (that is,
finding the closest codeword to an arbitrary vector) in a random code of length �.

Table C.1: Asymptotic complexity of full decoding for information set decoding variants

Algorithm Work Memory Reference
Lee-Brickell 20,1208�+
(�) �(�) [i.22]

Stern 20,1167�+
(�) 20,0318�+
(�) [i.23]
May-Meurer-Thomae 20,1116�+
(�) 20,0374�+
(�) [i.24]

Becker-Joux-May-Meurer 20,1019�+
(�) 20,0769�+
(�) [i.25]

In code-based PKE schemes and KEMs there is a guarantee on the weight of the codeword or error vector that is much
smaller than needed for full decoding: binary Goppa codes use weight � = 3(�/log(�)) errors and QC-MDPC codes
use weight � = 3(√�). Canto Torres and Sendrier [i.18] show that decoding an error or recovering a codeword of sub-
linear weight � = 6(�) has asymptotic complexity:

 7�����, �,�� = 2�������

where � = log�(�/(� − �)). This is independent of the variant of information set decoding being used.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 59

C.1 Decoding one out of many

If an attacker has a collection of syndromes and only needs to decode one of them, then collision decoding techniques
can be used to reduce the cost of recovery compared to standard information set decoding. Sendrier [i.26] showed that
the cost to decode one out of 8 syndromes is:

������,�,��

√�

under mild assumptions on 8.

This is directly relevant to code-based schemes that use quasi-cyclic codes. Message recovery corresponds to decoding
one of the syndromes obtained by taking quasi-cyclic shifts of the ciphertext.

NOTE: Key recovery for schemes that use QC-MDPC codes corresponds to finding one of the quasi-cyclic shifts
of the minimum weight codeword in the dual code. In this case, if there are 8 quasi-cyclic shifts then the
cost to recover one of them is 7�����,�,��/8; that is, the cost is reduced by a factor of 8 rather than √8.

C.4 Quantum information set decoding
Quantum information set decoding algorithms apply Grover search [i.27] or quantum walks [i.28] to classical
information set decoding algorithms to reduce the number of iterations. The quantum speed-up is similar to the quantum
speed-up for AES key recovery, and has similar trade-offs between maximum circuit depth and total gate count.

C.5 Costing metrics
There is a lack of consensus among the submissions on which metric to use when costing information set decoding:

• The BIKE submission suggests using the asymptotic complexity from [i.18] and ignoring the sub-exponential
terms. This is the closest analogue to the core-SVP methodology for lattice-based schemes.

• The HQC submission suggests using the asymptotic complexity from [i.18] but proposes specific expressions
for sub-exponential terms rather than ignoring them.

• The Classic McEliece submission argues that for the variants of information set decoding that involve
significant amounts of memory, the practical cost will be dominated by the memory accesses.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 60

Annex D:
Lattice costing methodology

D.1 Introduction
There are two main attacks against lattice-based cryptosystems: the primal attack, and the dual attack. Both attacks
involve finding short vectors in lattices. Primal attacks are considered for both LWE and NTRU-like schemes, but dual
attacks only apply to LWE schemes. The primal attack constructs a lattice (referred to as the primal lattice) associated
with a given public key, which contains the corresponding private key as a unique shortest vector. The dual attack
distinguishes public keys from random by finding short vectors in a related lattice, referred to as the dual
lattice. Estimates for the costs of both attacks are derived in terms of lattice reduction algorithms.

D.2 Lattice reduction
Lattice reduction algorithms convert a given basis for a lattice into another basis for the same lattice that consists of
vectors that are shorter and more orthogonal to one another. In general, producing an optimal basis that contains a
shortest non-zero vector in the lattice is NP-hard, but the primal and dual attacks each only require a basis that consists
of short enough vectors.

Block-Korkine-Zolotarev (BKZ) is a family of algorithms that reduce a basis for any �-dimensional lattice by using an
oracle that solves the exact Shortest Vector Problem (SVP) in a smaller dimension, 9. Efficiency is balanced against the
quality of the basis produced by varying 9, which is referred to as the block size, and using different SVP oracles. The
larger the block size the better the basis returned, in the sense that it will consist of shorter vectors, but at the cost of
more computation: clearly if 9 = � the SVP oracle computes a shortest nonzero vector in the full �-dimensional lattice.
This trade-off is used to determine how to parameterize lattice-based cryptosystems so that the quality of the basis
required to carry out an attack is prohibitively expensive.

D.3 Enumeration and sieving
There are two main approaches to instantiating the SVP oracle when using BKZ: enumeration, and sieving.
Enumeration algorithms run in super-exponential time but require relatively little memory. Sieving algorithms run in
exponential time, but also require exponential memory; however, current approaches to costing tend to focus on running
time by assuming (optimistically) that memory and memory accesses are free. In practice, enumeration algorithms are
usually more efficient than sieving algorithms for small dimensional lattices, with a cross-over at around dimension
80. Consequently, it is usually assumed that sieving algorithms are more efficient (in terms of running time) than
enumeration algorithms when considering the security of lattice-based cryptosystems.

The heuristic complexity of the best sieving algorithms is approximately 2�,��������� in the classical model, and
2�,�
������� in the quantum model, which makes use of Grover's search algorithm. The sub-exponential factors are
usually ignored to give respective costs of 2�,���� and 2�,�
��. Despite the slightly better bound in the quantum model,
it is not clear whether quantum computation will lead to improved running times in practice [i.20].

D.4 Core-SVP
Improvements continue to be made in terms of amortizing the cost of calling the SVP oracle when running BKZ.
Consequently, the core-SVP methodology makes the simplifying assumption that just a single call is made. For
example, for KYBER512 the required block size for the primal attack is estimated to be 403. Therefore, KYBER512
has a classical core-SVP cost of approximately 118 bits, and a quantum core-SVP cost of approximately 107 bits.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 61

D.5 Alternative metrics
The core-SVP methodology provides a simple but conservative approach to costing attacks against lattice-based
cryptosystems. An alternative metric is to consider the number of gates required to implement an attack, but this
approach is also not well understood. For some schemes it is possible to combine lattice reduction techniques with
meet-in-the-middle ideas to produce hybrid attacks that are more efficient than just relying on lattice reduction;
however, this is a relatively new area of research. Consequently, understanding how to produce more accurate costings
of attacks against lattice-based cryptosystems remains an important and active area of research.

ETSI

ETSI TR 103 823 V1.1.1 (2021-09) 62

History

Document history

V1.1.1 September 2021 Publication

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Introduction
	5 Background
	5.1 Terminology
	5.2 Families of post-quantum algorithms
	5.3 Security categories
	5.4 Security properties
	5.5 Finalists and alternate candidates at a glance

	6 Finalists
	6.1 Classic McEliece
	6.1.1 Overview
	6.1.2 Parameters
	6.1.3 Auxiliary primitives
	6.1.4 Public-key encryption scheme
	6.1.4.1 McEliece.PKE.KeyGen
	6.1.4.2 McEliece.PKE.Enc
	6.1.4.3 McEliece.PKE.Dec

	6.1.5 Key encapsulation mechanism
	6.1.5.1 McEliece.KEM.KeyGen
	6.1.5.2 McEliece.KEM.Enc
	6.1.5.3 McEliece.KEM.Dec

	6.1.6 Parameter sets
	6.1.7 Security
	6.1.8 Performance

	6.2 KYBER
	6.2.1 Overview
	6.2.2 Parameters
	6.2.3 Auxiliary primitives
	6.2.4 Public-key encryption scheme
	6.2.4.1 KYBER.PKE.KeyGen
	6.2.4.2 KYBER.PKE.Enc
	6.2.4.3 KYBER.PKE.Dec

	6.2.5 Key encapsulation mechanism
	6.2.5.1 KYBER.KEM.KeyGen
	6.2.5.2 KYBER.KEM.Enc
	6.2.5.3 KYBER.KEM.Dec

	6.2.6 Parameter sets
	6.2.7 Security
	6.2.8 Performance

	6.3 NTRU
	6.3.1 Overview
	6.3.2 Parameters
	6.3.3 Auxiliary primitives
	6.3.4 Public-key encryption scheme
	6.3.4.1 NTRU.PKE.KeyGen
	6.3.4.2 NTRU.PKE.Enc
	6.3.4.3 NTRU.PKE.Dec

	6.3.5 Key encapsulation mechanism
	6.3.5.1 NTRU.KEM.KeyGen
	6.3.5.2 NTRU.KEM.Enc
	6.3.5.3 NTRU.KEM.Dec

	6.3.6 Parameter sets
	6.3.7 Security
	6.3.8 Performance

	6.4 SABER
	6.4.1 Overview
	6.4.2 Parameters
	6.4.3 Auxiliary primitives
	6.4.4 Public-key encryption scheme
	6.4.4.1 SABER.PKE.KeyGen
	6.4.4.2 SABER.PKE.Enc
	6.4.4.3 SABER.PKE.Dec

	6.4.5 Key encapsulation mechanism
	6.4.5.1 SABER.KEM.KeyGen
	6.4.5.2 SABER.KEM.Enc
	6.4.5.3 SABER.KEM.Dec

	6.4.6 Parameter sets
	6.4.7 Security
	6.4.8 Performance

	7 Alternate candidates
	7.1 BIKE
	7.1.1 Overview
	7.1.2 Parameters
	7.1.3 Decoding
	7.1.4 Auxiliary primitives
	7.1.5 Public-key encryption scheme
	7.1.5.1 BIKE.PKE.KeyGen
	7.1.5.2 BIKE.PKE.Enc
	7.1.5.3 BIKE.PKE.Dec

	7.1.6 Key encapsulation mechanism
	7.1.6.1 BIKE.KEM.KeyGen
	7.1.6.2 BIKE.KEM.Enc
	7.1.6.3 BIKE.KEM.Dec

	7.1.7 Parameter sets
	7.1.8 Security
	7.1.9 Performance

	7.2 FrodoKEM
	7.2.1 Overview
	7.2.2 Parameters
	7.2.3 Auxiliary primitives
	7.2.4 Public-key encryption scheme
	7.2.4.1 Frodo.PKE.KeyGen
	7.2.4.2 Frodo.PKE.Enc
	7.2.4.3 Frodo.PKE.Dec

	7.2.5 Key encapsulation mechanism
	7.2.5.1 Frodo.KEM.KeyGen
	7.2.5.2 Frodo.KEM.Enc
	7.2.5.3 Frodo.KEM.Dec

	7.2.6 Parameter sets
	7.2.7 Security
	7.2.8 Performance

	7.3 HQC
	7.3.1 Overview
	7.3.2 Parameters
	7.3.3 Auxiliary error correction
	7.3.4 Auxiliary primitives
	7.3.5 Public-key encryption scheme
	7.3.5.1 HQC.PKE.KeyGen
	7.3.5.2 HQC.PKE.Enc
	7.3.5.3 HQC.PKE.Dec

	7.3.6 Key encapsulation mechanism
	7.3.6.1 HQC.KEM.KeyGen
	7.3.6.2 HQC.KEM.Enc
	7.3.6.3 HQC.KEM.Dec

	7.3.7 Parameter sets
	7.3.8 Security
	7.3.9 Performance

	7.4 NTRU Prime
	7.4.1 Overview
	7.4.2 Parameters
	7.4.3 Auxiliary primitives
	7.4.4 Streamlined NTRU Prime public-key encryption scheme
	7.4.4.1 SNTRUP.PKE.KeyGen
	7.4.4.2 SNTRUP.PKE.Enc
	7.4.4.3 SNTRUP.PKE.Dec

	7.4.5 Streamlined NTRU Prime key encapsulation mechanism
	7.4.5.1 SNTRUP.KEM.KeyGen
	7.4.5.2 SNTRUP.KEM.Enc
	7.4.5.3 SNTRUP.KEM.Dec

	7.4.6 NTRU LPRime public-key encryption scheme
	7.4.6.1 NTRULPR.PKE.KeyGen
	7.4.6.2 NTRULPR.PKE.Enc
	7.4.6.3 NTRULPR.PKE.Dec

	7.4.7 NTRU LPRime key encapsulation mechanism
	7.4.7.1 NTRULPR.KEM.KeyGen
	7.4.7.2 NTRULPR.KEM.Enc
	7.4.7.3 NTRULPR.KEM.Dec

	7.4.8 Parameter sets
	7.4.9 Security
	7.4.10 Performance

	7.5 SIKE
	7.5.1 Overview
	7.5.2 Parameters
	7.5.3 Auxiliary primitives
	7.5.4 Public-key encryption scheme
	7.5.4.1 SIKE.PKE.KeyGen
	7.5.4.2 SIKE.PKE.Enc
	7.5.4.3 SIKE.PKE.Dec

	7.5.5 Key encapsulation mechanism
	7.5.5.1 SIKE.KEM.KeyGen
	7.5.5.2 SIKE.KEM.Enc
	7.5.5.3 SIKE.KEM.Dec

	7.5.6 Parameter sets
	7.5.7 Security
	7.5.8 Performance

	Annex A: Proofs of security
	A.1 Introduction
	A.2 Security models
	A.3 Computational resources
	A.4 Tightness
	A.5 Worst-case to average-case reductions
	A.6 Random oracles

	Annex B: Security properties
	B.1 Introduction
	B.2 Public-key encryption
	B.3 Key encapsulation
	B.4 One-wayness
	B.5 CPA to CCA transforms

	Annex C: Code-based costing methodology
	C.1 Introduction
	C.2 Information set decoding
	C.3 Asymptotic complexity
	C.4 Quantum information set decoding
	C.5 Costing metrics

	Annex D: Lattice costing methodology
	D.1 Introduction
	D.2 Lattice reduction
	D.3 Enumeration and sieving
	D.4 Core-SVP
	D.5 Alternative metrics

	History

