ETSI TR 103 823 vi.1.1 021-09)

CYBER;
Quantum-Safe Public-Key Encryption and Key Encapsulation

2 ETSI TR 103 823 V1.1.1 (2021-09)

Reference
DTR/CYBER-QSC-0017

Keywords
algorithm, cybersecurity

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice

The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or
print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any
existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI
deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Notice of disclaimer & limitation of liability

The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of
experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law
and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fithess
for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not
limited to, the warranties of merchantability, fithess for a particular purpose and non-infringement of intellectual property
rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages

for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use
of or inability to use the software.

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2021.
All rights reserved.

ETSI

http://www.etsi.org/standards-search
http://www.etsi.org/deliver
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/People/CommiteeSupportStaff.aspx

3 ETSI TR 103 823 V1.1.1 (2021-09)

Contents

INtellectual Property RIGNES.... ..ot b e e e en e ns 7
0 L= V1V (o RS 7
MoOdal VErDS TEMINOIOQYccteieeiicieee ettt st e e s te s ae e aesbeeaeesbesreentesaeeasessesneensesreeneensessens 7
1 o0 0L SRS 8
2 S = (= (0= SR 8
21 NOIMBLIVE FEFEIENCES ...ttt s e ettt et e e teeeteesbe e be e beeatesaeesheesaeesaeeseenseenseensesseesteetaentenn 8
2.2 INfOIMALIVE FEFEIEINCES.......c.ee ettt ettt ettt et e e be e st e e be e beeatesaeesaeesbeesaeeseenbeeaseensesreesteeteentenn 8
3 Definition of terms, symbols and abbreviations............cccceeeiiieere e e 9
31 LIS (07PN 9
3.2 Y 1210 SRS 10
3.3 ADDIEVIBLIONS ...ttt b bt e s et bt sh e b e e h e e ae e s e e ee e b e sReeh e e Rt et e e e bt e bt eheene e e nne e 10
4 (o 11 o 1o 1 S 11
5 20 (0 (00 0o OSSR 12
51 I 10011 0T0] oo | TSP P ST SRP OO UPTORSTPRPRTON 12
5.2 Families of post-quantum algOrthMS...........ccue e ettt e e et e e nreeaesneennes 12
5.3 S o0 Y or= =0 o] =SSR 13
54 SECUNTY PIOPEITIES.....uviieeeete et et et e e st et e st e te e te s e e saeesae e seenteesseeseessaeseesteenseassesneesaeesaeesseenseenseensensennsaensennsens 13
55 Finalists and alternate candidates al @ gIANCEcouveieiee i e e e sae e reereens 14
6 T =TT (S 15
6.1 ClASSIC IMICEIIECE....... ettt et ettt et e et e et e e aeesaeesheesbeesbeeaseeaeesaeesseenbeenteentesseesreesteessnas 15
6.1.1 OVEIVIBW ...ttt ettt ettt e et e et e et e e besaeesaeesheesaeeaseeaseeaeeebeesbeeabeenbesasesaeesaeeaseenseenseensesteesbeesbeeateensesnsesnns 15
6.1.2 S 5 1 (< £SO SRRRRN 15
6.1.3 AUXTTTBIY PIIMITIVES......cviitieet ettt bbb st b b s e bt b bbb e bt e b b 15
6.1.4 Public-Key encryption SCHEME ..ottt te e e sneeenes 16
6.1.4.1 M CEIECEPKEKEYGEN. ...ttt sttt sttt ettt st et et s b e e ebesbe e ebesae e ebesbeneenens 16
6.1.4.2 MCEHECEIPKE.ENC......cueiiiitietisie ettt bttt e et et b bt a e st et et se e b e besbesb e e e enneneen 16
6.1.4.3 MCEIECEPKE.DEC ...ttt sttt st st sttt sttt st e st et et e st e e et e st et ebesaeneebesbeneenens 16
6.1.5 Key encapsulation MECNANISIM.......c.cuiiie et see e e sae et e e ae e e s raeste e te e be e seenseeneesneesnes 17
6.1.5.1 MCEIECEIKEM . KEYGENc.eveiee ettt ettt e e st te e teeae s e e sneesaeenteenteeneesnaesneesseenrens 17
6.1.5.2 MCEHECEIKEM.ENC ...ttt ettt ettt st st sae e sbeesbeeateeateeaeeebeenseentesaeesaeesreesanas 17
6.1.5.3 MCEIECEIKEM.DECtecteeie ettt ettt ettt et e te st e s he e s te e et e e atesaeeeaeeebeesbeenteenreeaeesaeesreesanas 17
6.1.6 S o001 < S < PSRRI 18
6.1.7 S o U 11 OO PP SO PO PPTPTSURTPTRON 18
6.1.8 PEITOMMAINCE.ottt ettt et e et e st e et e et e s atesaeesaeesaeesbeebeeabeeseesbeesbeebaeteentesnsesnnesans 18
6.2 L 0 SRR 19
6.2.1 OVEIVIEW ..ttt ettt sttt be s e et e bese e st et e st e se et e s e em e eb e s e emeeb e s b e st ebenEen e e b e sE et e b e sb e e et e sbe e ebesbeneebenbenenrens 19
6.2.2 L = 1101 (= £ TP P PSPPSR 19
6.2.3 E N A=V o] 0 1AY== USSR 20
6.2.4 Public-Key encryption SCHEME..........oi ettt et ae e e e enes 20
6.2.4.1 KYBER.PKEKEYGEN ...ttt sttt sttt sttt et st et besaeneebesbe st ebesaeeesesseneenens 20
6.2.4.2 KYBER.PKELENC ..ottt ettt ettt e e s e e e e s e e e s nnteeesnnneeeeanseeeenne 21
6.2.4.3 LN =] S 5 = o USRS 21
6.2.5 Key encapsulation MECHENISIM.oiiiie bbbttt sb e e 21
6.2.5.1 KYBER.KEM.KEYGENottt st st st ettt ettt eae e ebeesbeeseesneesaeesaeesaeas 21
6.2.5.2 KYBERIKEM.ENC ... ittt sttt et e e s eatae e e sbt e e e e s beeesanseeesnnneeeeanseeeenanes 22
6.2.5.3 KYBERIKEM.DEC...... .. ittt ettt st e e e st e e e st e e e s ssseeeeanseeeesanseeesnnneeeeanseeeenanes 22
6.2.6 L = 01 (= S £ PP R PP PRRPRO 22
6.2.7 S o U 1 SO PSPPSN 23
6.2.8 PEITOINANCE. ...ttt bbbt e e etk bt b e et e e e e e e Rt e bt eheeh e e heeae e e e e e ke sbeeb e e e ennennen 23
6.3 AV 1 (TR 23
6.3.1 OVEIVIBW ..ttt sttt sttt sttt s e et s e et et e st e st e b e s 4 e m e eb e s e emeeb e sEe st eE e s e e m e e b e e e ene et e sb et et e sbe e ebeabeneebenbenenrens 23
6.3.2 L = 111 (= £ PP P PSPPSR 24
6.3.3 AUXTTTBIY PIIMITIVES......cuiticee e b e b bbb st b et b e et eb e bt s b b 24

ETSI

6.34
6.34.1
6.3.4.2
6.3.4.3
6.3.5
6.351
6.352
6.3.53
6.3.6
6.3.7
6.3.8
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.44.1
6.4.4.2
6.4.4.3
6.4.5
6.451
6.452
6.4.5.3
6.4.6
6.4.7
6.4.8

7
7.1
711
712
7.13
714
7.15
7151
7.152
7.153
7.16
7.16.1
7.16.2
7.1.6.3
7.1.7
7.18
7.19
7.2
721
722
723
724
7241
7242
7243
725
7251
7252
7.253
7.2.6
727
7.2.8
7.3
731
732

4 ETSI TR 103 823 V1.1.1 (2021-09)

PUDBIiC-KEY ENCIYPLiON SCREIMIEottt bbb et b e et eb e 24
NTRU.PKE.KEYGEN ...ttt ettt ettt e st e e s aesae et e eeseeseeseesaeeseeneensensessenseseessesneeneensens 24
NTRU.PKE.ENC ...ttt sttt et s e e e s e ebe s st e st e e e sees e saeebesneeneeneensesbesaessesneenseneens 25
NTRU.PKE.DEC. ... ottt sttt sttt sttt st e e stesbesaeeseeaeeneeseesseseesaeeseeneenseseensessesaessesneensensens 25

Key encapsulation MECHENISIM. ..ot bbb et b e e 25
NTRU.KEM . KEYGEN. ...ttt sttt sttt bt bttt st e s be s b saesb e et e s e nsenbebeseesbesaeenneneens 25
NTRU.KEM .ENC.....oottiteiieieitie ittt ettt s e e sb et e e s e e besae b e e st ese e e et e besbesbe s e ennennens 26
NTRU.KEM.DEC ...ttt sttt ettt b e bbbt se e s b e s bt bt e bt e e e s e se e s e besbeebe e e enneneen 26

L = 01 (= B £ PP R PP PPPPRO 26

= o 3 Y /T 26

L 00107 P URRSRS 27

YN 2 PSSR 27

OVEBIVIBWW ...ttt ettt e ettt e a et e e e e et e ebe s Rt eaeeae e e e eeeeeeEeeReeeeemeemeeeeseeeEeeaeeseeneanseneeseeneesneeneeneensas 27

PAFGIMEBLES. ... ettt ettt ae e bt sae e e he e e e a e e e b et e e Re e e R et e eR et e eRe e e e aR e e eRe e e eRe e e aRe e e enneennreeanreennns 27

AUXTTTBIY PIIMITIVES......cuiitieee et bbb st b b h e bbbt b e bt e b b 28

PUDBIiC-KEY ENCIYPLiON SCREIMIEottt bbbt b e bbb 28
SABER.PKE.KEYGEN......coitiiiiieee ettt et h et b e b besae b e e enneneen 28
SABER.PKE.ENC ...ttt bbb e b a e eb e e 29
SABER.PKE.DEC.....ceiti ettt sttt ettt e bbbt bttt b e b nne b e nnen 29

Key encapsulation MECNANISIM.........cuiiii ettt e e sae e teeae e e e e saessa e te e te e teeteeneesneesnns 29
SABER.KEM.KEYGEN. ...ttt bt s et bbb et eb e s e enneneen 29
SABERKEM.ENC.......e ittt bttt e b et e b b et besbe b e e e e e 29
SABER.KEM.DEC ..ottt sttt te st st e st e s ae st et eneess e beseeeeesbesaeeseeneeneeneens 30

ParAIMELET SELS ... tei ettt ettt b ettt e b et e e a et e b et e e he e e b et e eRe e e eRe e e e R e e eRe e e aRe e e aRr e e anreennreeereennns 30

SEOUTLY vttt sttt ettt b et b e bt et b e e st bt se e st eb e s e e aeeb e sE e s e e R e HE e R e e bt nE e e e bt eE e e eb e nR e e ebe b e e bt nbennenea 30

L 00107 O RSRSN 31

FN L= gt (= 0 o = =SSP 31
BIIKE ettt b h et e b h b he R e £ e R e R e SRR e R e R £ oA e e R e R SR e AR e ReeR e e e e R e Rt eheebeeReene e e e e es 31

OVEBIVIBIN ..ttt bt h ettt et b e s bt e b e s e e s e b e SE £ e E e 4R eh e e s e e e e b e sE e eE e e Rt eh e et et e nbesheebesaeens e e enras 31

L = 101 (= £ PP P PSPPSR 32

D 1= oo o |1 o 32

AUXTTTBIY PIIMITIVES......cuiieieeeee bbb bbb st b et b et eb e bbb 32

PUDBIiC-KEY ENCIYPLiON SCREIMIEot ettt sb e 32
2Tl G S L= 1= o RSOSSN 32
BIKE.PKE.ENC... .ottt ettt st sttt et et e st e e s eeebeemeemeeseeseeseesaeeseeneanseneensesseseeesesneensenenns 33
BIKE.PKE.DEC ...ttt ettt sttt ettt e e st e be s te st es e e e enteseesbesaeeaeeseensenseneensesbesaeeseeneenseneens 33

Key encapsulation MECHENISIM.oiiiie bbbttt sb e e 33
BIKE.KEM .KEYGEN ...ttt sttt et b e bt ae ettt e e bt snesb e s e enneneen 33
BIKE.KEM .ENC ...ttt ettt b e bbbt et se e b e besbesb e e e enneneen 34
BIKE.KEM .DECc ittt ettt sttt st b e h et e et sh e bt bt e heeae e s et se e s e besbesbe e e enneneens 34

L = 01 (= S £ TP PSPPSR 34

S o Y/ 35

L 001071 OSSP RRS 35

00 (0] 1 PR SRS 35

OVEBIVIBW ...ttt ettt e ettt sttt et e e e e st e e besaeeaeeae e e e eeeeeeEeeaeeeeene e e enseseeebesaeemeeneanseneeseesaesneeneeneensas 35

PAFGIMEBLES. ...ttt ettt a e bt e s he e e he e e s a et e b et e e Re e e b et e eR et e eRe e e eaR e e eRe e e eRe e e aRe e e enneennreeanreenars 35

AUXTTTBIY PIIMITIVES.cuiiiete bbb st b et b b s b et b bbb bbb 36

PUDBIiC-KEY ENCIYPLION SCREIMIEottt ettt bbb e 36
L0 (o1 =l =Y = o 1SS 36
FPrOGOPKE.ENC ... bbbt bt bt s e e e b e b e eb e s bt ebe e e e e s 36
FPrOOOPKE.DEC ...ttt e bt e bbbt b et s e s e b et e se e ebesaeene e e e e e 37

Key encapsulation MECNANISIM.........cui ittt ee e e sae et e e ae et e e reesse e te e se e seenteeneesneesnns 37
[T0 0T =1V I =Y = o SR 37
FPOQOKEM.ENC ..ottt e bbb et b et e et e b sbeeb e e e enne e 37
FIOOOKEM.DEC. ...ttt ettt et e st e s ee s eesaeeseeneenseneensesbesaeeseeneeneeneens 37

ParAIMELET SELS ... tei ettt ettt b ettt e b et e e a et e b et e e he e e b et e eRe e e eRe e e e R e e eRe e e aRe e e aRr e e anreennreeereennns 38

S o U 11 OO PP SO PO PPTPTSURTPTRON 38

L 001071 OSSP RRS 39

(PSSR 39

OVEBIVIBW ..ttt ettt e et te e et e e et e e see et e s Rt eaeeae e e e eeseeeEeeReeeeemeemseeeseeebeeaeeseeneenseneeseeseesneeneeneensas 39

L = 111 (= £ PP P PSPPSR 39

ETSI

5 ETSI TR 103 823 V1.1.1 (2021-09)

733 AUXITTBIY BITON COMTECLION ...ttt sttt etttk b bbbt b bbbt b e st bbb n e 39
734 AUXTTTBIY PIIMITIVES.cviitieet bbbt b bbb et b bbbt be b 40
7.35 PUDBIiC-KEY ENCIYPLION SCREIMIEottt bbb et b et eb e 40
7.35.1 HQUC.PKEKEYGEN ...ttt ettt et h e s b e b e e be et e st e sae e saeeebeesbeenseensesaeesneesaeesaeas 40
7.35.2 L [O S I oSO PSR 40
7.35.3 HQUC.PKE.DEC ...c.teeetiiteseeteste ettt sttt sttt st st s a st se st beseeseebeseeseste e ebesaeneesenbeneenens 41
7.3.6 Key encapsulation MECNANISIM.......c.cui ittt e e sae et e e ae e e e esa e st e e te e seeseenseeneesneesnns 41
7.36.1 HQC.KEM.KEYGEN. ..ottt sttt sttt sttt s b st e s s bese b e s beseebesbeseebesbeseebesaeeesesbeneenens 41
7.3.6.2 HQUC.KEM.ENC ...ttt sttt sttt sttt e st e et e st et e besee e ebenee e ebesaeneebesbeneenens 41
7.3.6.3 HQUC.KEM.DEC ...ttt sttt sttt sttt sa et s e bt bese bt ebeseeseebeseesesee e ebesaeneebesbeneenens 41
7.3.7 ParAIMBLET SELS ... eeietie ittt ettt b et h et e b et e s ae e e b et e e he e e b et e eR e e e eRe e e e R e e ehe e e aRe e e anr e e eaneeanreeanreennrs 42
7.3.8 RS U 11 TP PSP P ST PPTPTSURTPRTON 42
7.3.9 L 00107 = O RRSRS 43
7.4 INTRU PG ... ettt ettt st s e s te e bt e beeaeeebeeebe e beesbeeatesaeesaeesaeesseenseeaseeasesseesteesbaesbeenseensesneesnns 43
74.1 OVEBIVIBW ..ttt ettt e ettt e et et et e e e e e et e s Rt eaeeae e e e eeeeeeEe e Rt eeeene e e eseseeebesaeeseeneanseseeseesaesneeneeneensas 43
74.2 PAIGIMEBLENS. ...ttt ae e bt eshe e e he e e s a e e e b et e e Re e e R et e eR e e e Re e e e aR e e ehe e e eRe e e aRn e e saneennreeanreennns 43
74.3 F N =V o] 1 1AY== USSR 43
744 Streamlined NTRU Prime public-key encryption SCheme...........ccccoveeiiice e 44
7441 SNTRUP.PKEKEYGEN.......oieiiiitiiieiieiesie sttt sttt st se st e st sbessesesbestenessenaenennes 44
7.4.4.2 SNTRUPLPKE.ENC. ..ottt sttt se et b et e s b s s e e s sseneebesaesessensenessenseneens 44
7443 SNTRUPLPKEDECcoiiiitiieiiiti ettt sttt se e b et se bt e s s e s e st s be s esenbentenesbenaenennas 45
745 Streamlined NTRU Prime key encapsulation MeChaniSMcvcvvviereeieeie s see e esee e e see e 45
7451 SNTRUP.KEM .KEYGEN ...ttt ettt a bbbt st e sae e saeeeeentesneesneesaeanaeas 45
7.4.5.2 SNTRUP.KEM.ENC ...ttt ettt ste e st e sste e s e e s aae e sateesaaeesateasaseesraeennneensaeennnnenns 45
7.4.5.3 SNTRUP.KEM.DEC.......ccctieciie ettt s e e e ste e s e e saae e st e e saae e st aeessaeesaeeessaeessaeennneenseeennneenns 45
7.4.6 NTRU LPRime public-Key encryption SCREMEcooiriiiiiireeeeee e 46
7.4.6.1 NTRULPR.PKE.KEYGEN.eeitieieiie ettt et ettt sttt te st e saeesaeesaeesae e st easeeneesaeesaeesseesaeas 46
7.4.6.2 NTRULPRPKE.ENC......cii ittt sttt ettt e e et e e s sasee e e ssaeeeeasbeeeseseeeesnnneeeeanseneennes 46
7.4.6.3 NTRULPRUPKE.DEC.......cctiiiietiiieieie ettt sttt st st et ste e sbesaesesbesteneesesaeneesesteseesesaenensesseneesens 46
74.7 NTRU LPRime key encapsulation MECNANISM...........cccueiieieerieeesee e seeste e e et e e ete s aesnaesnessneesnes 47
74.7.1 NTRULPRIKEM .KEYGEN ..ottt sttt sttt sttt ste et sae e ebesteneesesaenessesseseesens 47
7.4.7.2 NTRULPRIKEM.ENC ..ottt st sttt sttt sttt et ste e ebesae e esesbeneenens 47
7473 NTRULPRIKEM.DEC ...ttt sttt sttt sttt st st st seebesteseebesbeseesesbeseebesaeneesesseneesens 47
74.8 ParAIMELET SELS ... teeeiee ettt ettt ettt bt s ae e e b et e s ae e e b et e e he e e b et e eR e e e hE e e e R e e ehe e e eRe e e anr e e snneennreeanreennns 47
749 RS U 11 TP PSP P ST PPTPTSURTPRTON 48
7.4.10 L 00107 O RRRSRS 49
7.5 S SRR 49
751 OVEBIVIBW ..ttt ettt e ettt sttt et et e e s ee et e s st eaeeme e e e eeoeeeEeeReeseemeemeeneeseeebeaaeeseeneanseneeseeseesneeneeneensas 49
75.2 PAFGIMEBLES. ...ttt ettt ae e bt s he e e b et e e ae e e b et e e Re e e R et e eR e e e eRe e e eaR e e eRe e e e Re e e ane e e e aneennreeenneennns 50
753 E N A=V o) 1 1AY== USSR 50
754 Public-Key encryption SCHEME.........c.oo ettt teete e ne e enes 50
7541 SIKEPKEKEYGEN.....c.eiiiitiieiieie ettt sttt sttt st e bt s s et be s e eneebessesesbestenenbenaeneens 50
7542 SIKEPKE.ENC ...ttt sttt s bt e st st e st s s e st b et e s e e be st eneebenaeneenis 50
7543 SIKEPKE.DEC.ttt ettt sttt sttt s a et b e st e s bt s b e ebe s s ene b et en e e b e s teneebenaeneens 51
755 Key encapsulation MECNANISIM.........cuiiiiieece ettt ee e sae et e e ae e e ereessa e te e te e seeseeneeeneesnes 51
7551 STKEKEM . KEYGEN...... oottt sttt ettt ettt e eae e saeesbeesaeeee e e e eaeeeaeeaseemseennesaeesaeesaeas 51
7.5.5.2 STKEKEM.ENC....c ittt ettt et te e st e st e e st e e sat e e sae e e ssaeessteesaaeesaeeasnaeesaeennneessaeennenenns 51
7.5.5.3 SIKEKEM.DEC ..ottt sttt e e st e et e e s s e e e aaeesateeeaaeesabeaaneeesaeennneesseeennenesn 52
75.6 ParAIMELET SELS ... tei ettt ettt b ettt e b et e e a et e b et e e he e e b et e eRe e e eRe e e e R e e eRe e e aRe e e aRr e e anreennreeereennns 52
757 S o U 11 OO PO SOTP TP PPTPTSTURTPTRON 53
75.8 L 001071 OSSP RRS 53
Annex A: PrOOFS OF SEBCUIITY ...ttt 54
0 A 111 0o (1 o OSSP 54
A2 SECUNMTLY MOUEIS. ...ttt bt b e b e e e e e st e bt e bt s bt b e ne e e e st e bt nb e b e b e s e 54
A3 COMPULELIONA] FTESOUITES......ceviteeeesieeeeesiesieeeesteeeestesseeseesseeseseeaseasesseensesseensessesneessesseesensessesnsensesseenes 54
y N W0 1101= SRS 54
A5 Worgt-case to average-Case rEUUCHIONS..........cciiieiiiiteeeesie st este et te et s ee e te s e e s e sreeaesreeaeennenresnnenes 55

ETSI

6 ETSI TR 103 823 V1.1.1 (2021-09)

E NG =0T (o] 0] = =S J SO PT 55
Annex B: SECUTITY PIOPENTIES. ...ttt b e et e b b st eneeneenenrea 56
= 700 R 111 0o (1 (oo OSSPSR 56
B.2 PUBIIC-KEY ENCIYPLION......c.eiitiieeeie ittt re et et e e e s teeae e besre e s e sbesaeeseesneensesreennens 56
B.3 K@Y ENCADSUIBLION ...ttt bttt a bbb e e et b e r e n e nn e n e 56
o @ 1T Y T SRR 57
T O (o J O O N 1 7= o1 1TSS 57
Annex C: Code-based costing MEthOAOIOQY.......ccciieeeiiiieieiiee et 58
(O35 A 1 0100 [UTox i o] o OSSPSR 58
C.2 INFfOrmMation St AECOMING.cveeeeeieeiieiert ettt b bt e e se b nne e 58
C.3 ASYMPLOLiC COMPIEXITY ..uveviieieieciieie ettt e e st e s re e e e besreetesreensesteereensesreeneensenrean 58
C.4 Quantum information Set deCOUINGcc.eiuiiieiiiicie et be e et saeere e resreeanas 59
(O I 0= (] 0o [1071 [oXs TSP T PSSR URORTRO 59
Annex D: Lattice costing MEthOAOIOQY.........ccouiiiiieiiiiee e 60
9 200 R [g 0o 1o o o PSSR 60
(D B2 - 4ol = o (o o o 1SS 60
D.3 ENUMEration @Nd SIEVING.......cceeiiiiiieie ettt ete st st e e s re et e s beeaestesaeesbesreetesaeenseseesneensesreennens 60
D A Oo (=Y PSR PRPUPRUPRRUR 60
R N L= g 0= A= 0 oSS 61
[1S 0] Y PSSP 62

ETSI

7 ETSI TR 103 823 V1.1.1 (2021-09)

Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations
pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be
found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to
ETS in respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the
ETSI Web server (https:/ipr.etsi.org/).

Pursuant to the ETSI Directivesincluding the ETSI IPR Policy, no investigation regarding the essentiality of IPRS,
including I PR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not
referenced in ETSI SR 000 314 (or the updates on the ETS| Web server) which are, or may be, or may become,
essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners.
ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no
right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does
not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its
Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP
Organizational Partners. oneM 2M ™ logo is atrademark of ETSI registered for the benefit of its Members and of the
oneM2M Partners. GSM ® and the GSM logo are trademarks registered and owned by the GSM Association.

Intel, the Intel logo and Xeon are trademarks of Intel Corporation or its subsidiaries.

Foreword

This Technical Report (TR) has been produced by ETSI Technical Committee Cyber Security (CY BER).

Modal verbs terminology

In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" areto be
interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

ETSI

https://ipr.etsi.org/
https://portal.etsi.org/Services/editHelp!/Howtostart/ETSIDraftingRules.aspx

8 ETSI TR 103 823 V1.1.1 (2021-09)

1 Scope

The present document provides technical descriptions of the Public-Key Encryption (PKE) and Key Encapsulation
Mechanisms (KEMs) submitted to the National Institute for Standards and Technology (NIST) for the third round of
their Post-Quantum Cryptography (PQC) standardization process.

2 References

2.1 Normative references

Normative references are not applicable in the present document.

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] NIST FIPS 197: "Advanced Encryption Standard (AES)".

[i.2] NIST FIPS 180-4: " Secure Hash Standard”.

[i.3] NIST FIPS 202: "SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions'.

[i.4] NIST IR 8105: "Report on Post-Quantum Cryptography”.

[i.5] NIST FIPS 186-4: "Digital Signature Standard (DSS)".

[i.6] NIST SP-56A: "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography".

[i.7] NIST SP-56B: "Recommendation for Pair-Wise Key Establishment Schemes Using Integer
Factorization Cryptography™.

[i.8] NIST: "Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography

Standardization Process', December 2016.

NOTE: Available at https://csrc.nist.gov/CSRC/media/Proj ects/Post-Quantum-Cryptography/documents/cal |-for-
proposal s-final -dec-2016.pdf.

[i.9] NIST Post-Quantum Cryptography Standardization: "Round 1 Submissions’.

NOTE: Available at https://csrc.nist.gov/Proj ects/Post-Quantum-Cryptography/Round-1-Submissions.

[i.10] NIST IR 8240: " Status Report on the First Round of the NIST Post-Quantum Standardization
Process'.
[i.11] NIST Post-Quantum Cryptography Standardization: "Round 2 Submissions’.

NOTE: Available at https://csrc.nist.gov/Proj ects/post-guantum-cry ptography/round-2-submissions.

[i.12] NIST IR 8309: " Status Report on the Second Round of the NIST Post-Quantum Standardization
Process'.

ETSI

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions

9 ETSI TR 103 823 V1.1.1 (2021-09)

[1.13] NIST Post-Quantum Cryptography Standardization: "Round 3 Submissions'.

NOTE: Available at https://csrc.nist.gov/Proj ects/post-quantum-cryptography/round-3-submissions.

[i.14] ETSI TR 103 616: "CY BER; Quantum-Safe Signatures'.

[i.15] E. Fujisaki and T. Okamoto: " Secure integration of asymmetric and symmetric encryption
schemes', CRYPTO, 1999.

[i.16] D. Hofheinz, K. Hovelmanns and E. Kiltz: "A modular analysis of the Fujisaki-Okamoto
transformation”, TCC, 2017.

[i.17] N. Drucker, Shay Gueron and D. Kostic: "QC-MDPC decoders with several shades of gray",
PQCrypto, 2020.

[1.18] R. Canto Torresand N. Sendrier: "Analysis of information set decoding for a sub-linear error
weight", PQCrypto, 2016.

[1.19] N. Bindel, M. Hamburg, K. Hovelmanns, A. Hilsing, and E. Persichetti: "Tighter proofs of CCA
security in the quantum random oracle model”, TCC, 2019.

[i.20] M.R. Albrecht, V. Gheorghiu, E.W. Postlethwaite and J.M. Schanck: "Estimating quantum
speedups for lattice sieves', Cryptology ePrint Archive, Report 2019/1161, 2019.

[i.21] E. Prange: "The use of information sets in decoding cyclic codes’, IRE Transactions on
Information Theory 8.5 (1962): 5-9.

[i.22] P.J. Lee and E.F. Brickell: "An observation on the security of McEliece's public-key
cryptosystem”, EUROCRY PT, 1988.

[i.23] J. Stern: "A method for finding codewords of small weight", International Colloguium on Coding
Theory and Applications. Springer, Berlin, Heidelberg, 1988.

[i.24] A. May, A. Meurer and E. Thomae: " Decoding random linear codes in O (2°0.054n)",
ASIACRYPT, 2011.

[i.25] A. Becker, A. Joux, A. May and A. Meurer: "Decoding random binary linear codes in 2*(n/20):
How 1 + 1 = 0 improves information set decoding”, EUROCRY PT, 2012.

[i.26] N. Sendrier: "Decoding one out of many", PQCrypto, 2011.

[1.27] D.J. Bernstein: "Grover vs. McEliece”, PQCrypto, 2010.

[i.28] G. Kachigar and J.-P. Tillich: "Quantum information set decoding algorithms", PQCrypto, 2017.

[i.29] M. Naehrig and J. Renes. "Dual isogenies and their application to public-key compression for
isogeny-based cryptography", ASIACRYPT, 2019.

[1.30] G. Pereira, J. Doliskani and D. Jao: "x-only point addition formula and faster torsion basis
generation in compressed SIKE", Cryptology ePrint Archive, Report 2020/431, 2020.

3 Definition of terms, symbols and abbreviations
3.1 Terms

For the purposes of the present document, the following terms apply:

weight: number of non-zero components of avector or the number of non-zero coefficients of a polynomial

ETSI

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

3.2

10 ETSI TR 103 823 V1.1.1 (2021-09)

Symbols

For the purposes of the present document, the following symbols apply:

M
MT
I

3.3

Bold upper-case letters denote matrices (over some ring or field)
The transpose of the matrix M

The k x k identity matrix

Bold lower-case | etters denote vectors (over some ring or field)
The transpose of the vector v

The inner product of vectors a and b (defined over some common ring)
The al-zero vector consisting of k entries

x isassigned the value of y

The values of x and y are equal

The values of x and y are not equal

The concatenation of x and y

Bitwise exclusive or

Failure

The value of x when rounded to the nearest integer, with ties broken by rounding up
Modulus switching of x from modulus q to modulus p

A cryptographic hash function

A cryptographic hash function

The weight of the polynomial f

A finitefield

A finite field modulo g

Thering of integers

The ring of integers modulo g

A ring of polynomials

A ring of polynomials modulo gq

The set of k x k matrices with coefficientsin R,

The set of 1 x k matrices with coefficientsin R,

Centered binomial distribution of width n

Probability distribution over Z

Abbreviations

For the purposes of the present document, the following abbreviations apply:

AES
BIKE
BKZ
CCA
CPA
DEM
HQC
KEM
KDF
LWE
LWR
MLWE
MLWR
NIST
NTT
OW-CPA
PKE
PQC
PRF
QROM
RLWR
ROM

Advanced Encryption Standard
Bit Flipping Key Exchange
Blockwise Korkine-Zolotarev
Chosen-Ciphertext Attack
Chosen-Plaintext Attack

Data Encapsulation Mechanism
Hamming Quasi-Cyclic

Key Encapsulation Mechanism
Key Derivation Function
Learning With Errors

Learning With Rounding
Module Learning With Errors
Module Learning With Rounding
National Institute of Standards and Technology
Number Theoretic Transform
One-Wayness against Chosen-Plaintext Attack
Public-Key Encryption
Post-Quantum Cryptography
Pseudorandom Function
Quantum Random Oracle Model
Ring Learning With Rounding
Random Oracle Model

ETSI

11 ETSI TR 103 823 V1.1.1 (2021-09)

SHA Secure Hash Algorithm
SIDH Supersingular Isogeny Diffie-Hellman
SIKE Supersingular |sogeny Key Encapsulation
SVP Shortest Vector Problem
XOF Extendable Output Function

4 Introduction

The National Institute of Standards and Technology (NIST), an agency of the U.S. Department of Commerce, is
responsible for producing cryptographic standards for the protection of sensitive U.S. Federal Government information.
NIST standards, such as the Advanced Encryption Standard (AES) [i.1] and Secure Hash Algorithm (SHA) standards
[i.2] [i.3], are used globally in many different protocols and products.

In April 2016 NIST announced [i.4] their intention to augment their existing portfolio of public-key cryptography
standards[i.5], [i.6], [i.7] by developing new standards for post-quantum cryptography. In December 2016 they initiated
a competition-like process with a call for proposals[i.8] for digital signatures, Public-Key Encryption (PKE) schemes,
and Key Encapsulation Mechanisms (KEMs), that will remain secure even in the presence of a cryptographically
relevant quantum computer. The goal of the processisto perform several rounds of public evaluation over athree to
five-year period, and select one or more acceptable algorithms for standardization based on that eval uation.

NIST's deadline for submissions was November 2017. They received 69 candidates that met the minimum acceptance
criteria and submission requirements: 20 digital signature schemes, and 49 PKE schemes and KEMSs. Five submissions
were quickly broken and formally withdrawn from the process by their designers. This left atotal of 64 first round
candidates [i.9]. In January 2019 NIST announced [i.10] that 26 candidate algorithms would progress to the second
round of evaluation: nine digital signature schemes, and 17 PKE schemes and KEMs [i.11].

In July 2020 NIST announced [i.12] that 15 candidate algorithms would progress to the third round of evaluation. These
were split into seven finalists and eight aternate candidates. NIST described the finalists as the algorithms they consider
to be the most promising for the majority of use cases, and the most likely to be ready for standardization after the end
of the third round. The seven finalistsinclude three digital signature schemes, and four PKE schemes and KEMs. The
alternate candidates were described as having potential for future standardization, but most likely after another round of
evaluation. The eight alternate candidates include three digital signature schemes, and five PKE schemes and KEMs.

The purpose of the present document is to give concise descriptions of the nine PKE schemes and KEMs remaining in
the third round of NIST's standardization process. ETS|I TR 103 616 [i.14] provides similar descriptions of the six
remaining digital signature schemes.

The four PKE and KEM finalists are:
. Classic M cEliece (see clause 6.1)
. KYBER (seeclause 6.2)
. NTRU (see clause 6.3)
. SABER (see clause 6.4)
The five PKE and KEM alternate candidates are;
. Bit Flipping Key Exchange (BIKE) (see clause 7.1)
. FrodoKEM (see clause 7.2)
. Hamming Quasi-Cyclic (HQC) (see clause 7.3)
. NTRU Prime (see clause 7.4)
. Supersingular 1sogeny Key Exchange (SIKE) (see clause 7.5)

Each of these schemes has a different profile in terms of security properties and performance characteristics, so it is
expected that some of these schemes will be more suited to specific deployment scenarios than others.

ETSI

12 ETSI TR 103 823 V1.1.1 (2021-09)

The descriptions provided in the present document are not intended to be substitutes for the detailed specifications
submitted to NIST. Instead, the emphasisis on clear mathematical descriptions that facilitate easy comparison of the
different schemes. Implementation details, such as how to encode polynomials as bit strings, have been omitted
wherever possible. As such, some of the descriptions differ from the submissionsin terms of level of abstraction, use of
notation, and choice of variable names. It is expected that details of some of the schemes, such as specific parameter
choices, will change during the third round of evaluation, so for consistency the descriptions are based on the official
submission packages provided to NIST at the beginning of the third round [i.13].

5 Background

5.1 Terminology

A PKE scheme consists of atriple of algorithms:
. Key Generation (PKE.KeyGen). Returns a new public and private key pair.
o Encryption (PKE.Enc). Takesapublic key and plaintext as input and returns a ciphertext.
. Decryption (PK E.Dec). Takes a private key and ciphertext asinput and returns a plaintext.

NOTE 1: Some of the PKE schemes described in the present document use randomized encryption where the same
public key and plaintext correspond to many different possible ciphertexts. In these schemes the
randomness is derived from an additional input to the encryption process.

NOTE 2: Some of the PKE schemes described in the present document can have decryption failures where the
plaintext returned by the decryption process does not match the original plaintext used in encryption.
Decryption is assumed to aways return a plaintext.

PKE schemes are usually unsuitable for bulk data encryption. Consequently, they are often converted into KEMs where
one party encapsulates a session key for another party using the second party's public key. The session key, or avalue
derived from that key, is subsequently used by both parties to perform bulk data encryption using a (symmetric) Data
Encapsulation Mechanism (DEM) such as AES. This approach is often referred to as the KEM/DEM paradigm.

A KEM consists of atriple of algorithms:
o Key Generation (KEM .KeyGen). Returns a new public and private key pair.

o Encapsulation (KEM .Enc). Takes a public key asinput and returns arandomly selected session key and a
ciphertext that is an encapsulation of the session key.

. Decapsulation (KEM .Dec). Takes as input a private key and a ciphertext and returns a session key.

NOTE 3: Some of the KEM schemes described in the present document can have decapsulation failures where the
session key returned by the decapsulation process does not match the encapsulated session key.

In practice, PKE schemes and KEMs usually involve two parties. a sender and arecipient. The sender encrypts data or
encapsulates a key for the recipient, using the recipient's public key.

5.2 Families of post-quantum algorithms

There are five prominent families of post-quantum algorithms:

. Code-based schemes. The security of code-based schemes depends on the difficulty of decoding vectorsto
find the closest codeword or the shortest error vector. Code-based schemes generally fall into two categories:
M cEliece-style schemes, which use error correcting codes that can be efficiently decoded given some private
information; and noisy ElGamal-style schemes, which use random linear codes. Code-based cryptography
lends itself more naturally to the construction of PKE schemes and KEMs than to digital signature algorithms.

ETSI

13 ETSI TR 103 823 V1.1.1 (2021-09)

o L attice-based schemes. The security of lattice-based schemes depends on the difficulty of finding vectorsin a
lattice that are relatively short, or relatively close to some target vector. Lattice-based schemes generally fall
into two categories: NTRU-style schemes, which use lattices that have been specifically constructed to contain
private short vectors; and Learning With Errors (LWE) or Learning With Rounding (LWR) style schemes,
which use particular classes of random lattices. Lattice-based cryptography can be used to construct PKE
schemes, KEMs, and digital signature algorithms. In many cases lattice-based schemes admit worst-case to
average-case security reductions, though these reductions are often not relevant to proposed parameter sets;
see Annex A for more information.

. M ultivariate schemes. The security of multivariate schemes depends on the difficulty of solving systems of
quadratic or higher degree multivariate polynomials. Multivariate cryptography lends itself more naturally to
the construction of digital signature algorithms than to PKE and KEM schemes.

. I sogeny-based schemes. The security of isogeny-based schemes depends on the difficulty of recovering a
secret isogeny between apair of eliptic curves. Isogeny-based cryptography seemsto lend itself more
naturally to the construction of PKE and KEM schemes than to digital signatures, though there has been some
recent progressin this area.

. Symmetric schemes. The security of such schemes depends on the security of symmetric cryptographic
primitives such as hash functions and block ciphers. Symmetric cryptography only lendsitself to the
construction of digital signature algorithms. Examples include hash-based signatures, such as SPHINCS+, and
the PICNIC digital signature scheme.

Different post-quantum schemes utilize different algebraic structures. In code- and | attice-based cryptography, the
introduction of more structure can lead to improved computational performance and reduced bandwidth requirements.
However, thereis arisk that additional structure could introduce new, more efficient attack possibilities. For example,
the most efficient lattice-based schemes, which utilize rings of polynomials, have the most algebraic structure, but
becauseit is unclear how to exploit this additional structure, security costings usually assume that it offers an attacker
no extra advantage. Understanding whether additional algebraic structure introduces new attack possibilities, for both
code- and lattice-based cryptography, remains an important research topic.

5.3 Security categories

NIST have provided guidance on the evaluation criteria they intend to apply to candidate submissions[i.8]. As part of
this guidance, they have defined the following security categories in terms of the (classical or quantum) resources
required to attack different NIST-approved symmetric primitives:

. Category 1. Resources equivalent to or greater than key recovery for AES-128.
. Category 2. Resources equivalent to or greater than collision search for SHA3-256.
. Category 3. Resources equivalent to or greater than key recovery for AES-192.
. Category 4. Resources equivalent to or greater than collision search for SHA3-384.
. Category 5. Resources equivalent to or greater than key recovery for AES-256.

NIST recommended that submissions include parameter sets that meet the requirements for categories 1, 2 and/or 3, as
they believe that these categories will provide sufficient security for the foreseeable future. However, to demonstrate
flexibility, and to protect against future cryptanalytic breakthroughs, NIST also recommended that submissionsinclude
at least one parameter set that provides a substantially higher level of security. Submitters were asked to include
justifications for the security categories claimed for their proposed parameter sets.

54 Security properties

The two main security goalsthat are relevant for PKE schemes and KEMs are referred to as indistinguishability under
chosen-plaintext, and indistinguishability under chosen-ciphertext, where the latter provides a stronger notion of
security than the former. Both security goals are usually modelled as games:

. Chosen-Plaintext Attack (CPA) security for PKE. The attacker selects two plaintexts and is given the
corresponding ciphertext for one of them. The attacker's goal is to determine which of the plaintexts was
encrypted. The scheme is CPA-secure if the attacker cannot do significantly better than guessing.

ETSI

14 ETSI TR 103 823 V1.1.1 (2021-09)

. Chosen-Ciphertext Attack (CCA) security for PKE. The attacker selectstwo plaintexts and is given the
corresponding ciphertext for one of them. The attacker's goal is to determine which of the plaintexts was
encrypted. The attacker is allowed to request the decryption of ciphertexts of their choice, except for the
challenge ciphertext. The scheme is CCA-secure if the attacker cannot do significantly better than guessing,
even with access to the decryption oracle.

. Chosen-Plaintext Attack (CPA) security for KEMs. The attacker is given a ciphertext and either a session
key that is encapsulated by that ciphertext, or a uniformly random key. The attacker's goal is to determine
whether they have been given the session key, or arandom key. The scheme is CPA-secure if the attacker
cannot do significantly better than guessing.

. Chosen-Ciphertext Attack (CCA) security for KEMs. The attacker is given a ciphertext and either a session
key that is encapsulated by that ciphertext, or a uniformly random key. The attacker's goal isto determine
whether they have been given the session key, or arandom key. The attacker is allowed to request the
decapsulation of ciphertexts of their choice, except for the challenge ciphertext. The scheme is CCA-secure if
the attacker cannot do significantly better than guessing, even with access to the decryption oracle.

Expanded definitions of these properties and additional definitions are given in Annex B.

There are standard techniques available for converting a CPA-secure PKE scheme into a CCA-secure KEM. The most
common approach isto use a variant of the Fujisaki-Okamoto transform [i.15]. Broadly speaking, this usually involves
deriving the randomness required for encryption (or encapsulation) from the value to be encrypted (or encapsul ated);
note that this includes the randomness required for the sender to generate an ephemeral key pair. This allows the
recipient to attempt to reconstruct the received ciphertext, and check that the protocol has been followed as expected.

As mentioned above, CCA security is stronger than CPA security: arecipient's public key that is used for encryption or
encapsulation in a CPA-secure scheme can only be safely used once, or the security of the scheme could be
compromised, but arecipient's public key that is used for encryption or encapsulation in a CCA-secure scheme can be
safely reused. If an active adversary is able to reuse arecipient's public key in a CPA-secure scheme, they can send
messages that consist of erroneous ciphertexts that will reveal information about the recipient's private key.

NIST have stated that they intend to standardize at |east one CCA-secure PKE scheme or KEM for genera use, and that
they will consider standardizing a CPA-secure PKE scheme or KEM for applications where keys are never reused [i.8].
NIST have not mandated that submissions include proofs of CPA or CCA security, but they will consider proofs where
they are made available.

5.5 Finalists and alternate candidates at a glance
Table 1 contains a summary of each of the NIST public-key encryption and key encapsulation finalists.

Table 1: Summary of finalists

. Categories Security
Scheme Family Type Structure 1 > 3 4 5 CPA CCA Comments
Classic McEliece Codes McEliece None Y Y Y Y Y NOTE 1
KYBER Lattice LWE Module Y Y Y Y Y NOTE 2
NTRU Lattice NTRU Ring Y Y Y Y NOTE 3
SABER Lattice LWR Module Y Y Y Y Y
NOTE 1: Classic McEliece is a merger of the second round Classic McEliece and NTS-KEM submissions.
NOTE 2: The KYBER submission states that only the CCA version is to be used in practice.
NOTE 3: NTRU is a merger of the first round NTRUEncrypt and NTRU-HRSS-KEM submissions.

Table 2 contains a summary of each of the NIST public-key encryption and key encapsulation alternate candidates.

ETSI

15 ETSI TR 103 823 V1.1.1 (2021-09)

Table 2: Summary of alternate candidates

. Categories Security
Scheme Family Type Structure 1 5 3 4 5 CPA CCA Comments
BIKE Codes McEliece Ring Y Y Y Y NOTE 1
FrodoKEM Lattice LWE None Y Y Y Y Y
HQC Lattice Random Ring Y Y Y Y Y
NTRU Prime Lattice NTRU Field Y Y Y Y Y Y Y NOTE 2
SIKE Other Isogeny None Y Y Y Y Y Y
NOTE 1: The BIKE submission does not formally claim that the proposed parameters are CCA-secure.
NOTE 2: The NTRU Prime submission states that only the CCA version is to be used in practice.

6 Finalists

6.1 Classic McEliece

6.1.1 Overview

Classic McElieceis amerger of the Classic McEliece and NTS-KEM submissions from the second round of the NIST
standardization process. Classic McEliece consists of a CCA-secure KEM built from a OW-CPA-secure PKE scheme
using a variant of the Fujisaki-Okamoto transform from [i.16]. The security of Classic McEliece is based on the
difficulty of the syndrome decoding problem for general binary linear codes.

A binary Goppa code is defined by a monic irreducible polynomial g(X) € F,m[X] of degree t, and a sequence of n

distinct elements (a, ..., a,) where a; € F,m. These define a parity-check matrix H € F5»" by setting the (i, j)-th entry
of H tobeaj™"/g(a;). The matrix H is associated with a parity-check matrix H € F5**" to define a binary linear code
C ={ceF}|Hc" = 0} of length n and dimension k = n — mt with an efficient algorithm for decoding up to ¢ errors.

xn

Given apublic general parity-check matrix H € Ian_k for the code, it is believed to be computationally hard to

recover the private Goppa parity-check matrix H € Ian_k)x" that allows for fast decoding. It is aso believed that
without the private parity-check matrix, there are no decoding algorithms that are more efficient than generic
information set decoding.

Classic McElieceis defined as a CCA-secure KEM only, as the underlying PKE scheme is abuilding block that is not
intended as a separate submission to the NIST standardization process.
6.1.2 Parameters
The main parameters for Classic McEliece are:
e n,thecodelength;
. t, the error-correction capability;
. m, the degree of the field F,m; and

. k = n — mt, the code dimension.

6.1.3 Auxiliary primitives

Classic McEliece makes use of two auxiliary, symmetric primitives:
. H, a 256-bit cryptographic hash function; and
. KDF, akey derivation function.

The submission describes how to use SHAKE-256 to instantiate these primitives.

ETSI

6.1.4

6.1.4.1

Input:

16 ETSI TR 103 823 V1.1.1 (2021-09)

Public-key encryption scheme

McEliece.PKE.KeyGen

None

Output: Public key pk

)
2)
3
)

5)

Private key sk
Sample a uniformly random monic irreducible polynomial g(X) € F,m[X] of degreet.
Sample (ay, ..., a,), auniformly random sequence of n distinct elements of F,m.

txn

Construct the parity-check matrix H € Fyn'.
Convert H to a parity-check matrix H € F**",

Row reduce H to systematic form H := [I,,_, H'] € FS" %",

The public key is pk == H' € FY" """ The private key is sk = (g, @y, ..., ay,).

NOTE 1: In Step 5), if H cannot be row reduced to systematic form then key generation is restarted.

NOTE 2: The submission describes a version of Classic McEliece that allows the parity-check matrix in Step 5) to

6.1.4.2

be computed in semi-systematic form. Thisis designed to decrease the failure probability of Step 5).

McEliece.PKE.Enc

Input: Public key pk

Vector e (weight t)

Output: Ciphertext ¢

1)
2)

3

Parsethe publickey aspk = H' €]an—k)xk.
Construct the parity-check matrix H == [I,,_, H'] €]an_k)x,,.

Compute ¢ := He € F} %,

The ciphertext is c.

6.1.4.3 McEliece.PKE.Dec

[nput: Private key sk
Ciphertext ¢
Output: Vector e (weight t),
orl
1) Construct the n-bit vector v := c || 0, € F%, where 0, denotesthe all-zero vector with k entries.
2) Return the unique codeword e in the binary Goppa code defined by sk that is distance t from v.
3) If thereisno such codeword, return L.
NOTE: The Classic McEliece submission does not define a specific algorithm for use in Step 2), but it provides

references for different approaches to finding the nearest codeword in a binary Goppa code.

ETSI

17 ETSI TR 103 823 V1.1.1 (2021-09)

6.1.5 Key encapsulation mechanism

6.1.5.1 McEliece.KEM.KeyGen
Input: None

Output: Public key pk
Augmented private key sk

1) Sampleauniformly random n-bit string z.

2) Convert z to avector z € F75.

3) Call McEliece.PKE.KeyGen() to generate a public key pk and private key sk'.
The public key is pk. The augmented private key is sk := (sk’, pk, z).

NOTE: The Classic McEliece submission specifies how these elements, including z, can be generated
deterministically from a seed.

6.1.5.2 McEliece.KEM.Enc
Input: Public key pk

Output: Ciphertext ¢
Sessionkey K (length 256 bits)

1) Sample auniformly random vector e € F} of weight t.
2) Encrypt ¢q :== McEliece.PKE.Enc(pk, e).

3) Computec, :=H(2 Il e).

4) Derivethesessionkey K :=KDF(1 ll e |l ¢o Il ¢1).

The ciphertext is ¢ := (¢, ¢;). The session key is K.

6.1.5.3 McEliece.KEM.Dec

[nput: Augmented private key sk
Ciphertext ¢

Output: Sessionkey K (length 256 bits)

1) Parsetheprivate key as sk = (sk’, pk, z) and the ciphertext as ¢ = (¢, ;).
2) Setbh:=1.

3) Call McEliece.PKE.Dec(sk, c,) to recover e or L.

4) Iftheoutputis L, seth :=0ande = z.

5) Re-encrypt ¢g := McEliece.PKE.Enc(pk, e).

6) Ifcyg#co,setbh:=0ande =z

7) Computec; == H(2 Il e).

8 |Ifci#c,seth:=0ande :=z.

9) Derivethesessionkey K :=KDF(b ll e |l ¢y Il ¢y).

NOTE: InStep 9), K will be arandom key rather than a shared sessionkey if b = 0 and e = z.

ETSI

18 ETSI TR 103 823 V1.1.1 (2021-09)

6.1.6 Parameter sets

The Classic McEliece submission includes the parameter sets shown in Table 3.

Table 3: Proposed parameters for Classic McEliece

Set m n t Claimed Security
mceliece348864 12 | 3488 | 64 Category 1
mceliece460896 13 |4608 | 96 Category 3

mceliece6960119 13 |6960 | 119 Category 5
mceliece6688128 13 |6688 | 128 Category 5
mceliece8192128 13 8192 | 128 Category 5

These parameter sets lead to the public key, private key, and ciphertext sizes shown in Table 4.

Table 4: Classic McEliece public key, private key, and ciphertext sizes

Set Public Key Private Key | Ciphertext
(bytes) (bytes) (bytes)
mceliece348864 261120 6 452 128
mceliece460896 524 160 13568 188
mceliece6960119 1044 992 13 892 240
mceliece6688128 1047 319 13 908 226
mceliece8192128 1 357 824 14 080 240

6.1.7 Security

The main attacks considered are based on information set decoding, as described in Annex C. The Classic McEliece
submission does not include explicit security costings, so Table 5 shows estimated costs for each parameter set for the
classical security of message recovery, derived using the methodology described in Annex C. Costs are not included for
key recovery, askey recovery is believed to be significantly more difficult than message recovery.

Table 5: Classical security costings for Classic McEliece

Message recovery
Set (bits)
mceliece348864 140
mceliece460896 181
mceliece6688128 257
mceliece6960119 258
mceliece8192128 294

McEliece. KEM uses avariant of the Fujisaki-Okamoto transform from [i.16] to achieve tight CCA security. Further
work has achieved similar tightness for QROM attacks [i.19].

6.1.8 Performance

The Classic McEliece submission includes performance figures for an AV X2-optimized implementation run on asingle
core of a3,5 GHz Intel® Xeon® E3-1275 v3 processor. The performance figures for each parameter set are shown in
Table 6. The semi-systematic parameter sets have different key generation algorithms, but the same encryption and
decryption algorithms.

ETSI

19 ETSI TR 103 823 V1.1.1 (2021-09)

Table 6: Classic McEliece performance figures

McEliece.KEM.KeyGen McEliece.KEM.Enc | McEliece.KEM.Dec

Set Version- (cycles) (cycles) (cycles)
mceliece348864 Segssgg‘;‘;“c o 44 350 134 745
mceliece460896 Se§3:s;§2;:;;ztlc 21578558 117 782 271 694
mceliece6960119 Segssgg‘;‘;“c T 151 721 323 957
mceliece6688128 Se§3:s;§2;:r§;;tlc SR Lo 161 224 301 480
mceliece8192128 Seri?’_s‘stsggicaﬂc oL e 178 093 326 531

6.2 KYBER

6.2.1 Overview

KYBER is part of the CRY STALS package, along with the DILITHIUM digital signature scheme. KY BER consists of
a CPA-secure PKE scheme that is converted into a CCA-secure KEM using avariant of the Fujisaki-Okamoto
transform from [i.16]. The security of KYBER is based on the Module Learning With Errors (MLWE) problem.

Let R, denote the polynomial ring (Z,[X])/(X™ + 1) for aprime q and a power-of-two n. A MLWE sampleis a pair of
theform (4, As + e), where A € R’qfx" isapublic matrix consisting of polynomials whose coefficients are sasmpled
uniformly at random fromzZ,, and s € R’q‘ and e € R’; are private vectors of polynomials whose coefficients are
sampled from a small distribution over Z,. The MLWE problem asserts that it is computationally hard to distinguish
MLWE samples of the form (4, As + e;) from pairs of the form (4, u), whereu € R’; isavector consisting of
polynomials sampled uniformly at random from R,;.

The submission makesit clear that KYBER is defined as a CCA-secure KEM only, and that the underlying PKE
schemeis abuilding block that is not intended as a separate submission to the NIST standardization process. Part of the
provided rationale for this decision is that in addition to protecting against key reuse, the CCA transform also protects
against some implementation mistakes, such as sampling small polynomials from the wrong distribution.
6.2.2 Parameters
The main parameters for KYBER are:

. n, the degree of the polynomial ring R,;;

e g, themodulus of the polynomial ring R;

. k, the rank of the matrices and vectors over R,;; and

e 7, andn,, the width of the zero-centred binomial distributions B, and B,,, .

For al KYBER parameter setsn = 256 and q := 3 329. The security level isvaried primarily by changing , and the
rank k of the module, which means that the underlying polynomial arithmetic operations remain fixed.

Thevalue of g used by KYBER is chosen to keep the probability of decryption failures low, while allowing a variant of
the Number Theoretic Transform (NTT) to be used to carry out fast multiplication of elementsin R,. For efficiency,
some values are computed or transmitted in the NTT domain. Consequently, the specific NTT used by KYBER is part
of the definition of the scheme. However, for ease of exposition, the present document does not include a description of
the NTT, asits details are not integral to the overall design of KYBER, and do not affect any of the security arguments.

ETSI

20 ETSI TR 103 823 V1.1.1 (2021-09)

6.2.3 Auxiliary primitives
KYBER makes use of several auxiliary, symmetric primitives:
. G, a512-bit cryptographic hash function;
e H, a256-hit cryptographic hash function;
. KDF, akey derivation function;
o PRF, a pseudorandom function; and
. XOF, an extendable output function.

The submission describes two different approaches to instantiate these primitives, as shown in Table 7.

Table 7: Auxiliary symmetric primitives for KYBER

Primitive Version
FIPS-202 90s
G SHA3-512 SHA-512
H SHA3-256 SHA-256
KDF SHAKE-256 SHAKE-256
PRF SHAKE-256 AES-256 in counter mode
XOF SHAKE-128 AES-256 in counter mode

The"90s" variant isincluded to evaluate performance on platforms that provide hardware support for AES and SHA-2.
KYBER also makes use of the following two functions:

e Compress(x,d) = [(2%/q) - x| mod 2¢

. Decompress(x,d) = [(q/2%) - x|

Both functions are generalized to work with polynomials by operating coefficientwise.
6.2.4 Public-key encryption scheme

6.24.1 KYBER.PKE.KeyGen
Input: None

Output: Public key pk
Private key sk

1) Sampleauniformly random 256-bit seed d.
2) Hashtheseed d using G to produce two 256-bit seeds d,, || d, = G(d).
3) Expand the seed d,, using XOF to produce the public matrix A € RE*¥.
4) Sample sy, ey € R’; deterministically from B, using PRF with the seed d, .
5) Computet := Asg + €y € RE.
The public key ispk := (t,d,). The private key is sk = s,.

NOTE: TheKYBER submission usesthe NTT for efficient polynomial multiplication. The public matrix A is
expanded directly inthe NTT domain, whereas the private values are sampled in the normal domain and
then transformed to the NTT domain. The public value t is distributed in the NTT domain, and the private
value s, isstored inthe NTT domain.

ETSI

6.2.4.2

21 ETSI TR 103 823 V1.1.1 (2021-09)

KYBER.PKE.Enc

Input: Public key pk

Plaintext m (Iength 256 bits)
Random seed r (length 256 bits)

Output: Ciphertext ¢

1)
2)
3)
4)
5)
6)
7)

8)

Parse the public key aspk = (t, d,).

Expand the seed d,, using XOF to produce the public matrix A € RE*¥.

3) Samples,,e; € RY deterministically from B, and B,, using PRF with the seed r.
Computeu := A"s; + e; € RE.

Sample e, € R, deterministically from B,, using PRF with the seed r.

Encode the plaintext as an element u € R, by setting each coefficient y; to [m;(q/2)].
Compute v == t"s; + e, + u €ER,.

Compute u’ := Compress(u, d,) and v’ := Compress(v, d,).

The ciphertext isc := (u’, v").

NOTE 1: Thevaluesd, and d,, are specified as part of each parameter set.

NOTE 2: The public matrix A is expanded directly in the NTT domain. The public value t is transmitted in the

6.2.4.3

Input:

NTT domain. The private vector s, is sampled in the norma domain and transformed to the NTT domain
to compute A”s, and t”'s,, but the resulting val ues are transformed back to the normal domain before
adding e, and e, + u, respectively. The final compression step is performed in the normal domain.

KYBER.PKE.Dec

Private key sk
Ciphertext ¢

Output: Plaintext m (Iength 256 bits)

1)
2)
3)

4)

Parse the private key as sk = s, and the ciphertext asc = (u',v").
Compute u := Decompress(u’, d,) and v := Decompress(v’, d,).
Compute u' == v — sgu € R,.

Recover the plaintext m by setting each bit m; to [u;(2/q)] mod 2.

NOTE: Theprivatevaue s, isstored inthe NTT domain. The ciphertext value u is decompressed in the normal

6.2.5

6.25.1

Input:

domain, transformed to the NTT domain to compute sju, and the result is transformed back to the normal
domain before computing v — shu. The final decoding step is performed in the normal domain.

Key encapsulation mechanism

KYBER.KEM.KeyGen

None

Output: Public key pk

Augmented private key sk

ETSI

22 ETSI TR 103 823 V1.1.1 (2021-09)

1) Sample auniformly random 256-bit value z.
2) Cdl KYBER.PKE.KeyGen() to generate a public key pk and corresponding private key sk’.
The public key is pk. The augmented private key is sk := (sk’, pk, z).

6.2.5.2 KYBER.KEM.Enc
Input: Public key pk

Output: Ciphertext ¢
Sessionkey K (length 256 hits)

1) Sample auniformly random 256-bit message m.

2) Derivetwo 256-bit seeds k and r by computing k Il v :== G(H(m) | H(pk)).
3) Encrypt ¢ := KYBER.PKE.Enc(pk, H(m),).

4) Derivethe session key K := KDF(k Il H(c)).

The ciphertext isc. The session key isK.

6.2.5.3 KYBER.KEM.Dec

Input: Augmented private key sk
Ciphertext ¢

Output: Sessionkey K (length 256 bits)

1) Parsetheprivatekey assk = (sk’,pk, z).

2) Decryptm’ :== KYBER.PKE.Dec(sk’, c).

3) Derivetwo 256-bit seeds k' and v’ by computing k' Il ' := G(m' Il H(pk)).
4) Reencrypt ¢’ == KYBER.PKE.Enc(pk,m',r").

5) If ¢’ = c, then derive the session key K := KDF(k' Il H(c)).

6) Otherwise, derive arandom key K := KDF(z Il H(c)).

6.2.6 Parameter sets

The KYBER submission includes the parameter sets shown in Table 8.

Table 8: Proposed parameters for KYBER

Failure Claimed

Set n q k M 2 dy dy probability | security
KYBER512 256 3329 2 3 2 10 4 2°139 Category 1
KYBER768 256 3329 3 2 2 10 4 2-164 Category 2
KYBER1024 256 3329 4 2 2 11 5 2174 Category 3

These parameter sets lead to the public key, private key, and ciphertext sizes shown in Table 9.

ETSI

23 ETSI TR 103 823 V1.1.1 (2021-09)

Table 9: KYBER public key, private key, and ciphertext sizes

Set Public Key Private Key Ciphertext
(bytes) (bytes) (bytes)
KYBER512 800 1632 768
KYBER768 1184 2 400 1088
KYBER1024 1568 3168 1568
6.2.7 Security

The main attacks considered are the primal and dual attacks described in Annex D. Because KYBER is based on the
MLWE problem, its security depends on the difficulty of finding short vectorsin a particular class of lattices, which are
referred to as modul e lattices. However, because it is not known how to exploit KY BER's algebraic structure, the
attacks are costed using the general-purpose core-SV P methodol ogy described in Annex D. The costs for each
parameter set are shown in Table 10.

Table 10: Core-SVP costings for KYBER (primal attack only)

Set Classical_ core-SVP Quantu m core-SVP
(bits) (bits)
KYBER512 118 107
KYBER768 182 165
KYBER1024 256 232

The KYBER submission claims that KY BER.PKE has atight proof of security in the ROM that it is CPA-secure based
on the computational hardness of the MLWE problem, and that KY BER.KEM has atight proof of security in the ROM
that it is CCA-secure based on the CPA security of KYBER.PKE.

The KYBER submission claims that KYBER.KEM has a non-tight proof of security in the QROM that it is CCA-secure
provided KYBER.PKE is CPA-secure in the QROM. A tight proof is possible, but relies on the assumption that a
deterministic version of KYBER.PKE is pseudorandom in the QROM.

6.2.8 Performance

The KYBER submission includes performance figures for AV X2-optimized implementations run on a single core of a
3,5 GHz Intel® Core™ i7-4770K processor. The performance figures for each parameter set are shownin Table 11.

Table 11: KYBER performance figures

et Version KYBER.KEM.KeyGen |KYBER.KEM.Enc |KYBER.KEM.Dec
(cycles) (cycles) (cycles)
KYBER512 F'PQSO'SZ 02 ﬁf ggg 32 532 22 (7322
KYBER768 F'PQ%'SZ 02 23 Zgé % fiﬁ gi éig
KYBER1024 F|P950-52 02 4712 gig 2(73 gég 17115138302
6.3 NTRU
6.3.1 Overview

NTRU isamerger of the NTRUEnNcrypt and NTRU-HRSS-KEM submissions from the first round of the NIST
standardization process. NTRU consists of a OW-CPA-secure PKE scheme that is converted into a CCA-secure KEM
using a variant of the Fujisaki-Okamoto transform from [i.16]. The security of NTRU is based on the difficulty of
finding short vectorsin a particular class of structured |attices.

ETSI

24 ETSI TR 103 823 V1.1.1 (2021-09)

Let R, denote the polynomial ring (Z,[X])/(X™ + 1) for a power-of-two g and a prime n. The NTRU problem asserts
that given a uniformly random polynomial h € R, it is computationally hard to find polynomials f and g € R, such
that h = g/f, and f and g are short when considered as vectors.
6.3.2 Parameters
The main parameters for NTRU are:
e n,thedegree of the polynomial ring R := (Z[X])/(X™ + 1);
e g, themodulus of the polynomial rings R, = (Z,[X])/(X™ + 1) and S, = (Zq[X]D/(X" "t + X2 + -4+ 1);
e p,theauxiliary modulus; and
o L; Ly L, Ly, sample spaces for polynomials f, g, r, m respectively.

For all NTRU parameter setsp := 3. The degreen is chosen to be prime so that X~ + X2 + ... + 1 isirreducible.
The modulus q is chosen to be a power-of-two to make modular reductions trivial. The security level isvaried by
changing n and q. The parameter sets are chosen to ensure that NTRU is not susceptible to decryption failures.

To describe the samples spaces, the following definitions are used:
e A polynomial in Z[x] is said to be ternary if its coefficients al liein {—1,0,1};
. T isthe set of non-zero ternary polynomialsin Z[x] of degree at most n — 2;
. T (d) isthe set of polynomialsin T with d /2 coefficients equal to +1 and d /2 coefficients equal to —1;
e 7T, istheset of polynomialsv = v,,_, X" 2 + -+ 1, X + v, € T suchthat vov; + -+ + v,_3V,-, = 0; and

e 7! istheset of polynomials of theform (X + 1)v forv € T,.

6.3.3 Auxiliary primitives
NTRU makes use of the following auxiliary, symmetric primitives:
e H,a?256-hit cryptographic hash function; and
. KDF, akey derivation function.
The submission describes how to use SHA3-256 to instantiate H and KDF.
The submission al'so makes use of an injection Convert : S, — Z[x] such that forany m € £, andm’ =minS§,
Convert(m') = m.

The Convert function depends on the choice of sample space £,,,.
6.3.4 Public-key encryption scheme

6.3.4.1 NTRU.PKE.KeyGen
Input: None

Output: Public key pk
Private key sk

1) Samplef € Lyandg € L,.
2) Computetheinverse f, of f inS,.

3) Computeh :=pgf, inR,.

ETSI

4) Computetheinverse h, of hinS,.

5) Computetheinverse f, of f inS,.

25

The public key ispk := h. The private key is sk = (f,fp, hq).

NOTE:
6.3.4.2 NTRU.PKE.Enc
Input: Public key pk

Plaintext (r,m) (r € £,,m € L,,)

Output: Ciphertext ¢

1)

Parse the public key aspk = h.

2) Computem’ := Convert(m).

3)

Compute ¢ == rh + m' inR,,.

The ciphertext isc.

6.3.4.3

Input:

NTRU.PKE.Dec

Private key sk
Ciphertext ¢

Output: Plaintext (r,m) (r € L,,m € L,;)),

1)
2)
3)
4)
5)
6)

7)

or L.
Parse the private key assk = (f, f, hy)-
If ¢ #0inS, thenreturn L.
Compute a := cf inR,.
Computem := af,, in S,,.
Computem’ := Convert(m).
Computer := (c —m')h, inS,.

Ifr e L,.orm’ ¢ L, thenreturn L.

The plaintext is (r, m).

6.3.5 Key encapsulation mechanism
6.3.5.1 NTRU.KEM.KeyGen
Input: None

Output: Public key pk

1)
2)

The public key is pk. The augmented private key is sk := (sk’, z).

Augmented private key sk

Sample a uniformly random 256-bit value z.

ETSI TR 103 823 V1.1.1 (2021-09)

If the inverse does not exist in Step 2), 4), or 5) then key generation is restarted.

Call NTRU.PKE.KeyGen() to generate a public key pk and corresponding private key sk'.

ETSI

26 ETSI TR 103 823 V1.1.1 (2021-09)

6.3.5.2 NTRU.KEM.Enc
Input: Public key pk
Output: Ciphertext ¢
Sessionkey K (length 256 hits)
1) Sampler e L,andm € L,,.
2) Encrypt ¢ :== NTRU.PKE.Enc(pk, (r,m)).
3) Derivethe sessionkey K := KDF(r || m).

The ciphertext is c. The session key isK.

6.3.5.3 NTRU.KEM.Dec
Input: Private key sk
Ciphertext ¢
Output: Sessionkey K (length 256 bits)

1) Parsetheprivate key sk = (sk’, z).
2) Cal NTRU.PKE.Dec(sk’, c) to recover (r,m) or L.
3) Iftheoutputis (r, m), derivethe sessionkey K := KDF(r || m).

4) Iftheoutputis L, derivearandomkey K := KDF(z |l ¢).

6.3.6

The NTRU submission includes the parameter sets shown in Table 12.

Parameter sets

Table 12: Proposed parameters for NTRU

Failure Claimed
Set n 1 Ly Ly Lr L probability | security
ntruhps2048509 | 509 2048 T T(254) T T(254) 272143 -
ntruhps2048677 | 677 2048 T T(254) T T(254) 272139 Category 1
ntruhps4096821 | 821 4 096 T, 7(510) T T(254) 274332 Category 3
ntruhrss701 701 | 8192 T, 7. T T 277966 Category 1

These parameter sets lead to the public key, private key, and ciphertext sizes shown in Table 13.

Table 13: NTRU public key, private key, and ciphertext sizes

Set Public Key Private Key Ciphertext
(bytes) (bytes) (bytes)
ntruhps2048509 699 935 699
ntruhps2048677 930 1234 930
ntruhps4096821 1230 1590 1230
ntruhrss701 1138 1450 1138

6.3.7

The main attacks considered are the primal and hybrid attacks described in Annex D. Because NTRU is based on the
NTRU assumption, its security depends on the difficulty of finding short vectorsin aparticular class of lattices, which
arereferred to as NTRU lattices. However, because it is not known how to exploit NTRU's algebraic structure, the
attacks are costed using the general -purpose core-SV P methodology described in Annex D. The costs for both attacks
are shownin Table 14.

Security

ETSI

27

ETSI TR 103 823 V1.1.1 (2021-09)

Table 14: Core-SVP costings for NTRU

Primal attack Hybrid attack
Set classical core-SVP classical core-SVP
(bits) (bits)
ntruhps2048509 106 105
ntruhps2048677 145 144
ntruhps4096821 179 178
ntruhrss701 136 134

The NTRU submission claims that NTRU.KEM is CCA-secure in the ROM and the QROM provided NTRU.PKE is
OW-CPA-secure. The submission claims that the proof in the ROM is tight, but the proof in the QROM is non-tight. A
tight proof in the QROM is possible, but relies on the additional assumption that NTRU.PKE is pseudorandom.

6.3.8

The NTRU submission includes performance figures for an AV X2-optimized implementation run on asingle core of a
3,5 GHz Intel® Core™ i7-4770K processor. The performance figures for each parameter set are shown in Table 15.

Performance

Table 15: NTRU performance figures

Set NTRU.KEM.KeyGen | NTRU.KEM.Enc NTRU.KEM.Dec
(cycles) (cycles) (cycles)
ntruhps2048509 191 279 61 331 40 026
ntruhps2048677 309 216 83519 59 729
ntruhps4096821 431 667 98 809 75 384
ntruhrss701 340 823 50 441 62 267
6.4 SABER
6.4.1 Overview

SABER consists of a CPA-secure PKE scheme that is converted into a CCA-secure KEM using avariant of the
Fujisaki-Okamoto transform from [i.16]. The security of SABER is based on the Module Learning With Rounding
(MLWR) problem.

Let R, and R, denote the polynomial rings (Z,[X])/(X™ + 1) and (Z,[X])/(X™ + 1), where p and q are chosen so that
p divides q, and n is a power-of-two. A MLWR sampleisapair of the form (A, [As]q_,p), where A € R§Xk isapublic
matrix consisting of polynomials with coefficients sampled uniformly at random fromZ,, s € R{; isaprivate vector of
polynomials with coefficients sampled from a small distribution over Z,, and |4s],_,,, denotes a modulus switching
operation that deterministically rounds the components of As from elementsin R, to elementsin R,. The MLWR
problem asserts that it is computationally hard to distinguish MLWR samples of the form (4, |As],_,,,) from pairs of
the form (4, |ul,_,), where u is auniformly random element of Rf.

The standard way to instantiate the modul us switching operation |x],-,,, is asthe function | (p/q) x] mod p, where
X € Zq and |x],-,, € Z,, Which can be generalized to work over vectors and polynomials by operating on each
component. This function can be efficiently implemented by adding a constant and shifting.

NOTE: The SABER submission does not instantiate [x],_,,, in thisway due to the choice of constants used in the
adding and shifting operations.
6.4.2 Parameters

The main parameters for SABER are;
. n, the degree of the polynomial rings Ry, R,,, and Rr;

e g, themodulus of the base polynomial ring R,;

ETSI

28 ETSI TR 103 823 V1.1.1 (2021-09)

p, the modulus of the polynomial ring R,,, used when modulus switching from g to p;
T, the modulus of the polynomial ring R, used when modulus switching fromp to T';
k, the rank of the matrices and vectors over R,;; and

1, the width of the zero-centred binomial distribution B,,.

For all SABER parameter setsn := 256, g := 23, and p := 21°. Notethat p, g, and T, are chosen as powers of 2 so
that p divides q, and T divides p, and to make modular reductions trivial. Modulus switching from p to T is used to
compress the ciphertext. The security level isvaried by changing n and k, which means that the underlying polynomial
arithmetic operations remain fixed.

6.4.3

Auxiliary primitives

SABER makes use of several auxiliary, symmetric primitives:

G, a512-bit cryptographic hash function;
H, a256-bit cryptographic hash function;
KDF, akey derivation function;

PRF, a pseudorandom function; and

XOF, an extendable output function.

The submission describes two different approaches to instantiate these primitives, as shown in Table 16.

Table 16: Auxiliary symmetric primitives for SABER

Primitive Version
Saber Saber-90s
G SHA3-512 SHA2-512
H SHA3-256 SHA2-256
KDF SHA3-256 SHA2-256
PRF SHAKE-128 AES-256 in counter mode
XOF SHAKE-128 AES-256 in counter mode

6.4.4 Public-key encryption scheme
6.4.4.1 SABER.PKE.KeyGen
Input: None

Output: Public key pk

1)
2)
3)
4)

5)

Private key sk
Sample auniformly random 256-bit seed d.
Expand the seed d using X OF to produce the public matrix A € RE**.
Sample a uniformly random 256-bit seed r.
Sample sy € R’q‘ deterministically from B, using PRF with the seed r.

Compute t == |A"s4],-, € RE.

The public key ispk := (t,d). The private key is sk = s,.

ETSI

29 ETSI TR 103 823 V1.1.1 (2021-09)

6.4.4.2 SABER.PKE.Enc
Input: Public key pk
Plaintext m (Iength 256 bits)
Random seed r (length 256 bits)
Output: Ciphertext ¢
1) Parsethepublic key aspk = (t, d).
2) Expand the seed d using XOF to produce the public matrix A € RE**.
3) Samples; € R’q‘ deterministically from B, using PRF with the seed r.
4) Computeu := |As41,-, € Ry
5) Computev :=t"s; € R,
6) Encode the plaintext as an element 1 € R,, by setting each coefficient u; tom;(p/2).
7) Compressv' := [v — ul,-r € Rr.

The ciphertext isc == (u, v").

6.4.4.3 SABER.PKE.Dec

Input: Private key sk
Ciphertext ¢

Output: Plaintext m (length 256 bits)
1) Parsetheprivate key as sk = s, and the ciphertext asc = (u, v").
2) Computev := u'sy € R,,.

P

3) Recover the plaintext by computing m := lv -7 v’] ER,.
p-2

6.4.5 Key encapsulation mechanism

6.4.5.1 SABER.KEM.KeyGen
Input: None

Output: Public key pk
Augmented private key sk

1) Sample auniformly random 256-bit value z.
2) Cal SABER.PKE.KeyGen() to generate a public key pk and corresponding private key sk’.

The public key is pk. The augmented private key is sk := (sk', pk, z).

6.4.5.2 SABER.KEM.Enc
Input: Public key pk

Output: Ciphertext ¢
Sessionkey K (length 256 bits)

1) Sampleauniformly random 256-bit message m.
2) Derivetwo 256-bit seeds k and r by computing k || v := G (H (pk) | m).

ETSI

30 ETSI TR 103 823 V1.1.1 (2021-09)

3) Encrypt ¢ ;== SABER.PKE.Enc(pk,m,).
4) Derivethe session key K := KDF(k |l ¢).

The ciphertext isc. The sessionkey isK.

6.4.5.3 SABER.KEM.Dec
[nput: Ciphertext ¢
Augmented private key sk
Output: Sessionkey K (length 256 bits)

1) Parsetheprivatekey assk = (sk',pk, z).

2) Decrypt m’ := SABER.PKE.Dec(c, sk'").

3) Derivetwo 256-bit seeds k' and r' by computing k' || v’ := G(H(pk) || m').
4) Reencrypt ¢’ :== SABER.PKE.Enc(pk,m’,r").

5) If ¢’ = ¢, thenderivethesessionkey K := KDF(k' |l ¢).

6) Otherwise, derive arandomkey K := KDF(z || ¢).

6.4.6 Parameter sets

The SABER submission includes the parameter sets shown in Table 17.

Table 17: Proposed parameters for SABER

Failure Claimed

Set n 1 p T k probability security
LightSaber 256 213 210 23 2 10 2-120 Category 1
Saber 256 213 210 24 3 8 2-136 Category 3
FireSaber 256 213 210 26 4 6 2-165 Category 5

These parameter sets lead to the public key, private key, and ciphertext sizes shown in Table 18.

Table 18: SABER public key, private key, and ciphertext sizes

Set Public Key Private Key Ciphertext
(bytes) (bytes) (bytes)
LightSaber 672 1568 736
Saber 992 2304 1088
FireSaber 1312 3040 1472
6.4.7 Security

The main attacks considered are the primal and dual attacks described in Annex D. Because SABER is based on the
MLWR problem, its security depends on the difficulty of finding short vectorsin a particular class of lattices, which are
referred to as module lattices. However, because it is not known how to exploit SABER's algebraic structure, or its use
of rounding, the attacks are costed using the general -purpose core-SV P methodol ogy described in Annex D. The costs
for each parameter set are shown in Table 19.

ETSI

The SABER submission claims that SABER.PKE has atight proof of security in the ROM that it is CPA-secure based
on the computational hardness of the MLWR problem, and that SABER.KEM has a tight proof of security in the ROM

31

ETSI TR 103 823 V1.1.1 (2021-09)

Table 19: Core-SVP costings for SABER (primal attack only)

Set Classical core-SVP Quantum core-SVP
(bits) (bits)
LightSaber 118 107
Saber 189 172
FireSaber 260 236

that it is CCA-secure based on the CPA security of SABER.PKE.

The SABER submission claimsthat SABER.KEM has a hon-tight proof of security in the QROM that it is CCA-secure

provided SABER.PKE is OW-CPA-secure, which holds by virtue of SABER.PKE being CPA-secure.

6.4.8

The SABER submission includes performance figures for AV X 2-optimized implementations run on a2,0 GHz Intel®

Performance

Core™ i7-4510U processor. The performance figures for each parameter set are shown in Table 20.

Table 20: SABER performance figures

SABER.KEM.Keygen

SABER.KEM.Enc

SABER.KEM.Dec

Set version (cycles) (cycles) (cycles)
LightSaber Saber 45 152 49 948 47 852
Saber-90s 28 928 35 491 35123
Saber Saber 66 727 79 064 76 612
Saber-90s 36 315 45 575 46 380
FireSaber Saber 100 959 117 151 116 095
Saber-90s 57 144 70 335 72 797

7 Alternate candidates

7.1.1 Overview

BIKE isa CPA-secure KEM that is based on Quasi-Cyclic Moderate Density Parity Check (QC-MDPC) codes.

Let R, denote the polynomial ring R, = (Z,[X])/(X™ + 1) for aprimen. A QC-MDPC code of length 2n and rank n
isalinear code C = { ¢ € R}*? | HcT = 0} defined by a quasi-cyclic parity-check matrix H = [k, h;] € R3*? which
has moderate Hamming weight w = 0(\/5) Recovering the private moderate-density parity-check matrix H from a
public description of the QC-MDPC code C is equivaent to finding a codeword of weight w in the dual code generated
by H. Thisis believed to be computationally hard when the parameters are chosen appropriately.

Lete =[eo €1] € R1*? be an error vector with moderate Hamming weight ¢ = O(\/ﬁ) The syndrome corresponding
to e istheelement s = He” € R,. There are efficient algorithms for recovering the weight ¢ error vector e from the
syndrome s when the moderate-density parity-check matrix H is known. If the moderate-density parity-check matrix H
is not known, then syndrome decoding for a QC-MDPC code is believed to be as hard as syndrome decoding for a
random quasi-cyclic code.

BIKE uses avariant of the Fujisaki-Okamoto transform from [i.16] to convert a CPA-secure PKE into a CCA-secure
KEM. However, CCA security relies on the probability of a decoding failure being sufficiently low. The parameters
proposed for BIKE are estimated to have alow enough decoding failure probability, but there is no formal proof of this,
so the BIKE submission only claims CPA-security for the KEM.

ETSI

32 ETSI TR 103 823 V1.1.1 (2021-09)

7.1.2 Parameters
The main parameters for BIKE are:
e n,thedegree of the polynomial ring R,;
e w,the combined weight of the private polynomialsin key generation; and
. t, the combined weight of the private polynomialsin encryption and encapsulation.

The degree n is chosen to be a prime where the only irreducible factors of X™ + 1 over thefield Z, are X + 1 and
X" 4+ X+ 1.

The weight w is chosen so that w = 2 (mod 4). This guarantees that the polynomials of weight w/2 sampled in key
generation will dways be invertiblein R,.

NOTE: Where necessary, aweight function, denoted wt(f), which returns the weight of the input polynomial f,
is used to clarify certain requirementsin the algorithm descriptions.

7.1.3 Decoding

BIKE uses adecoder that iteratively flips bits in a candidate error vector based on the number of incorrect parity-check
equations that use those bits. The third round submission recommends the Black-Gray-Flip decoder by Drucker,
Gueron, and Kostic [i.17]. Previous versions of BIKE used different decoders.

Bit flipping decoders can fail to recover the correct error vector; such decoding failures leak information about the
private parity-check matrix. The probability of a decoding failure is sensitive to the specific choice of decoder and
decoding parameters.

NOTE: Thedescription of BIKE given in the present clause assumes that the decoding a gorithm always returns
an error vector, eveniif it isincorrect.

7.1.4 Auxiliary primitives

BIKE makes use of several auxiliary, symmetric primitives:
. H, a256-bit cryptographic hash function;
o KDF, akey derivation function; and
. PRF, a pseudorandom function.

The submission describes how to use SHA-2 and AES to instantiate these primitives, as shown in Table 21.

Table 21: Auxiliary symmetric primitives for BIKE

Primitive Instantiation
H SHA-384, output truncated to 256 bits
KDF SHA-384, output truncated to 256 bits
PRF AES-256 in counter mode

7.1.5 Public-key encryption scheme

7.1.5.1 BIKE.PKE.KeyGen
Input: None

Output: Public key pk
Private key sk

1) Sampleuniformly random f, g € R, so that wt(f) = wt(g) = w/2.

ETSI

33 ETSI TR 103 823 V1.1.1 (2021-09)

2) Computeh:=g/f €R,.

The public key ispk :== h. The private key is sk == (f, g).

7.15.2

Input:

Output:

BIKE.PKE.Enc

Public key pk
Plaintext m (length 256 bits)
Random seed r (length 256 bits)

Ciphertext ¢

1) Parsethepublickey aspk = h € R,.

2) Samplee,, e; € R, deterministically using PRF with the seed r, so that wt(e;) + wt(e;) = t.

3) Computec, :== hey + e; €ER,.

4) Computeu = H(e, Il e;).

5) Computec, :=m®u.

The ciphertext is ¢ = (¢, ¢;).

7.15.3

Input:

Output:

BIKE.PKE.Dec

Private key sk
Ciphertext ¢

Message m’ (Iength 256 bits)

1) Parsetheprivate key as sk = (f, g) and the ciphertext as ¢ = (¢, ;).

2) Computes :=cyf € R,.

3) Decodes using f and g to recover e) and e;.

4) Computeu’ := H(eg Il 7).

5) Recover the plaintext by computingm' :== ¢, ®u’.

NOTE:

7.1.6

7.16.1
Input:
Output:

Step 3) computes the syndrome s = ge, + fe, corresponding to the error vector e = [€o €1] and

!

parity-check matrix H = [g f]. Step 4) recovers a candidate error vector e’ = [e, e;] fromthe
syndrome s using the Black-Gray-Flip decoder.

Key encapsulation mechanism

BIKE.KEM.KeyGen
None

Public key pk
Augmented private key sk

1) Sample auniformly random 256-bit private value z.

2) Cadl BIKE.PKE.KeyGen() to generate a public key pk and corresponding private key sk'.

The public key is pk. The augmented private key is sk := (sk', pk, z).

ETSI

7.1.6.2
Input:

Output:

34 ETSI TR 103 823 V1.1.1 (2021-09)

BIKE.KEM.Enc

Public key pk

Ciphertext ¢

Sessionkey K (length 256 hits)

1) Sample auniformly random 256-bit plaintext m.

2) Encrypt ¢ := BIKE.PKE.Enc(pk, m,m).

3) Derivethe sessionkey K := KDF(m |l ¢).

The ciphertext isc. The sessionkey isK.

NOTE:

7.1.6.3

Input:

Output:

In Step 2), in the call to BIKE.PKE.Enc, the message is used as the random seed.

BIKE.KEM.Dec

Augmented private key sk
Ciphertext ¢

Sessionkey K (length 256 bits)

1) Parsetheprivatekey assk = (sk',pk, z).

2) Decryptm’ = BIKE.PKE.Dec(sk’, ¢).

3) Reencrypt ¢’ := BIKE.PKE.Enc(pk,m',m").

4) If ¢’ = ¢, thenderivethe session key K := KDF(m' || ¢).

5) Otherwise, derive arandomkey K := KDF(z || ¢).

NOTE:

7.1.7

The BIKE submission does not perform a full re-encyption check. Instead, it checks that the candidate
error vector e’ = [e e;] recovered in step 4) of BIKE.PKE.Dec matchesthe error vector e = [e €1]
derived from m' in step 2) of BIKE.PKE.Enc. Thisis sufficient to guarantee that the ciphertexts ¢ and ¢’
will match with overwhelming probability.

Parameter sets

The BIKE submission includes the parameter sets shown in Table 22.

Table 22: Proposed parameters for BIKE

Set n w t |Failure probability |Claimed security
Level 1 |12323 |142 |134 2128 Category 1
Level 3 |24 659 |206 [199 2:192 Category 3
Level 5 40973 |274 |264 2256 Category 5

These parameter sets lead to the public key, private key and ciphertext sizes shown in Table 23.

Table 23: BIKE public key, private key, and ciphertext sizes

Set Public key |Private key |Ciphertext
(bytes) (bytes) (bytes)
Level 1 1541 281 1573
Level 3 3083 419 3115
Level 5 5122 580 5154

ETSI

35 ETSI TR 103 823 V1.1.1 (2021-09)

7.1.8

The security of BIKE depends on the difficulty of finding a moderate-weight codeword or decoding a syndrome with a
moderate-weight error. In both cases, the best attacks involve information set decoding, and target multiple codewords
or errors of the same weight obtained from the quasi-cyclic structure; see Annex C for more information. The BIKE
submission does not include explicit security costings, so Table 24 shows estimated costs for each parameter set for the
classical security of key and message recovery, derived using the methodology described in Annex C.

Security

Table 24: Classical security estimates for BIKE

Set Key recovery Message_recovery
(bits) (bits)
Level 1 128 127
Level 3 191 191
Level 5 258 256

BIKE.KEM has atight proof of security inthe ROM that it is CCA-secure, based on the hardness of the quasi-cyclic
syndrome decoding and quasi-cyclic codeword finding problems, and provided that the decoding failure rateis
sufficiently low. The tight proof of security remains valid in the QROM. However, the decoding failure rates for the
BIKE parameters shown in Table 22 are estimates based on simulation and extrapolation rather than rigorous upper
bounds. Consequently, the BIKE submission only claims CPA security for BIKE.KEM.

7.1.9 Performance

The BIKE submission includes performance figures for an AV X2-optimized implementation run on asingle core of a
1,3 GHz Intel® Core™ i7-1065G7 processor. The performance figures for the Level 1 and Level 3 parameter sets are
shown in Table 25. The submission does not include performance figures for the Level 5 parameter set.

Table 25: BIKE performance figures

BIKE.KEM.KeyGen |BIKE.KEM.Enc |BIKE.KEM.Dec
Set
(cycles) (cycles) (cycles)
Level 1 600 000 220 000 2 220 000
Level 3 1 780 000 465 000 6 610 000
7.2 FrodoKEM
7.2.1 Overview

FrodoKEM consists of a CPA-secure PKE scheme that is converted into a CCA-secure KEM using a variant of the
Fujisaki-Okamoto transform from [i.16]. FrodoK EM's security is based on the Learning With Errors (LWE) problem.

Let n and g be positive integers, and y be adistribution over Z. For afixed, private s € Z7, a sample from the LWE
distribution 4, , is obtained by sampling a € Zg uniformly at random, sampling an integer error e € Z from the
distribution y, and outputting the pair (a,{(a, s) + emod q) € Zy X Z,. In FrodoKEM, the coefficients for all vectors
are sampled from a symmetric distribution on Z, centred at 0, with small support, which approximates a rounded
continuous Gaussian distribution. The LWE problem asserts that it is computationally hard to distinguish LWE samples
of the form (a, {(a, s) + e) from pairs of the form (a, u), where u is auniformly random element of Z,,.

The submission makesit clear that FrodoKEM is defined as a CCA-secure KEM only, and that the underlying PKE
schemeis a building block that is not intended as a separate submission to the NIST standardization process.

1.2.2

The main parameters for FrodoKEM are:

Parameters

ETSI

36 ETSI TR 103 823 V1.1.1 (2021-09)

e n,m,integer matrix dimensions;

. q = 2P, apower-of-two modulus with exponent D < 16;
ey, aprobability distribution over Z;

e B < D, thenumber of bits encoded in each matrix entry; and
e £ =B-m?,thelength of seeds, messages, and session keys.

For al FrodoKEM parameter setsm := 8.

7.2.3 Auxiliary primitives
FrodoK EM makes use of several auxiliary, symmetric primitives:
. G, a 2¢-bit cryptographic hash function;
. H, an £-bit cryptographic hash function;
. KDF, akey derivation function;
. PRF, a pseudorandom function; and
. XOF, an extendable output function.

The submission describes how to use SHAKE-128 or SHAKE-256 to instantiate G, H, KDF, and PRF, depending on
the parameter set being used. XOF can be instantiated using either AES-128 or SHAKE-128.

FrodoKEM also makes use of the following two functions:

. Encode maps abit string of length £ to a matrix in Zg™™; and

e Decode extracts abit string of length £ from a matrix in Zg™>™.

7.2.4 Public-key encryption scheme

7.24.1 Frodo.PKE.KeyGen
Input: None

Output: Public key pk
Private key sk

1) Sample auniformly random 128-bit seed d,,.

2) Expand the seed d,, using XOF to produce the public matrix A € Zg*™.

3) Sampleauniformly random £-bit seed d, .

4) Sample Sy, E, € Zy*™ deterministically from y using PRF with the seed d; .
5) ComputeT := AS, + E, € Zy*™.

The public key ispk := (T, d,). The private key is sk := S,,.

7.2.4.2 Frodo.PKE.Enc
Input: Public key pk
Plaintext m (Iength ¢ bits)
Random seed r (length ¢ bits)

Output: Ciphertext ¢

ETSI

37 ETSI TR 103 823 V1.1.1 (2021-09)

1) Parsethepublickey aspk = (T, d,).

2) Expand the seed d,, using XOF to produce the public matrix A € Zg ™.

3) SampleS,, E; € Z3**™ and E, € Z7>™ from y deterministically using PRF with the seed r.
4) Compute U := S1A + E4 € Zg"*™.

5) ComputeV := $;T + E, + Encode(m) € Z7"™.

The ciphertextisc := (U, V).

7.2.4.3 Frodo.PKE.Dec

[nput: Private key sk
Ciphertext ¢

Output: Plaintext m (length # bits)
1) Parsetheprivate key as sk = S, and the ciphertext asc = (U, V).
2) ComputeV':=V —US, € Z7"™.

3) Recover the plaintext by computing m := Decode(V').
7.2.5 Key encapsulation mechanism

7.25.1 Frodo.KEM.KeyGen
Input: None

Output: Public key pk
Augmented private key sk

1) Sample auniformly random £-bit value z.
2) Call FrodoPKE.KeyGen() to generate a public key pk and corresponding private key sk'.
The public key is pk. The augmented private key is sk := (sk’, pk, z).

7.25.2 Frodo.KEM.Enc
Input: Public key pk

Output: Ciphertext ¢
Sessionkey K (length ¢ bits)

1) Sampleauniformly random £-bit message m.

2) Derivetwo £-bit seeds k and r by computing k || r :== G(m || H(pk)).
3) Encrypt ¢ := Frodo.PKE.Enc(pk, m,r).

4) Derivethe session key K := KDF(k |l ¢).

The ciphertext isc. The session key isK.

7.25.3 Frodo.KEM.Dec

[nput: Augmented private key sk
Ciphertext ¢

Output: Sessionkey K (length £ hits)

ETSI

38

ETSI TR 103 823 V1.1.1 (2021-09)

1) Parsetheprivatekey assk = (sk',pk, z).
2) Decrypt m' := Frodo.PKE.Dec(sk', ¢).
3) Derivetwo ¢-bit seeds k' and r' by computing k' Il v’ := G(m' | H(pk)).
4) Re-encrypt ¢’ := Frodo.PKE.Enc(pk, m',r").
5) If ¢’ = ¢, thenderivethe session key K := KDF(k' || ¢).
6) Otherwise, derive arandom key K := KDF(z |l ¢).
7.2.6 Parameter sets

The FrodoKEM submission includes the parameter sets shown in Table 26.

Table 26: Proposed parameters for FrodoKEM

Support of Failure Claimed

Set n m q pr B probability security
Frodo-640 640 8 215 [—12..12] 2 271387 Category 1
Frodo-976 976 8 216 [-10..10] 3 271996 Category 3
Frodo-1344 1344 8 216 [—6...6] 4 272525 Category 5

These parameter sets lead to the public key, private key, and ciphertext sizes shown in Table 27.

Table 27: FrodoKEM public key, private key, and ciphertext sizes

Set Public Key Private Key Ciphertext
(bytes) (bytes) (bytes)
Frodo-640 9616 19 888 9720
Frodo-976 15 632 31 296 15744
Frodo-1344 21 520 43 088 21 632
1.2.7 Security

The main attacks considered are the primal and dual attacks described in Annex D. The attacks are costed using the
general-purpose core-SV P methodology described in Annex D. The costs for each parameter set are shown in Table 28.

Table 28: Core-SVP costings for FrodoKEM (primal attack only)

Set Classical_ core-SVP Quantu m core-SVP
(bits) (bits)
Frodo-640 151 138
Frodo-976 216 197
Frodo-1344 282 256

The FrodoKEM submission claims that for a uniformly random public matrix A, Frodo.PKE has atight proof of
security in the standard model that it is CPA-secure against classical and quantum adversaries, based on the
computational hardness of the LWE problem.

The submission claims that this result holds when A is generated from a seed, provided the pseudorandom generator is
modelled as an ideal cipher (when using AES-128) or as arandom oracle (when using SHAKE-128).

The submission also claims that Frodo.KEM has:
. atight proof of security inthe ROM that it is CCA-secure based on the CPA security of Frodo.PKE; and

. anon-tight proof of security in the QROM that it is CCA-secure provided Frodo.PKE is OW-CPA-secure.

ETSI

39 ETSI TR 103 823 V1.1.1 (2021-09)

7.2.8 Performance
The FrodoKEM submission includes performance figures for AV X2-optimized implementations run on a 3,4 GHz

Intel® Core™ i7-6700 processor. The implementations use either AES-128 or SHAKE-128 to instantiate X OF to
generate the public matrix A. The performance figures for each parameter set are shown in Table 29.

Table 29: FrodoKEM performance figures

Set Version Frodo.KEM.Keygen Frodo.KEM.Enc Frodo.KEM.Dec
(cycles) (cycles) (cycles)
Frodo-640 AES 1384 000 1861 000 1751 000
SHAKE 4 022 000 4 440 000 432500
Frodo-976 AES 2 896 000 3563 000 3399 000
SHAKE 8 579 000 9 302 000 9 143 000
Frodo-1344 AES 4 732 000 5 965 000 5 738 000
SHAKE 15 191 000 16 357 000 16 148 000
7.3 HQC

7.3.1 Overview
HQC isa CCA-secure KEM based on the difficulty of syndrome decoding for random quasi-cyclic codes.

Let R, denote the polynomial ring R, = Z,[X]/(X™ + 1) for aprimen. A quasi-cyclic parity-check matrix H € R3**
defines quasi-cyclic code € = { ¢ € R3*% | HcT = 0} of length an and rank n. The syndrome corresponding to an error
vector e € R1** of weight d isthe element s = He” € R,. Recovering the weight d error from a syndrome s and
parity-check matrix H is believed to be computationally hard for random quasi-cyclic codes. Similarly, distinguishing a
syndrome s corresponding to aweight d error from a uniformly random element of R, isalso believed to be
computationally hard.

HQC uses avariant of the Fujisaki-Okamoto transform from [i.16] to convert a CPA-secure PKE into a CCA-secure
KEM. CCA security relies on the probability of a decoding failure being sufficiently low. HQC plaintexts are encoded
using an auxiliary error correcting code that reduces the decoding failure rate and allows a theoretical bound to be
calculated. Consequently, the HQC submission claims that HQC.KEM is CCA-secure for the proposed parameter sets.

7.3.2 Parameters

The main parameters for HQC are:

n, the degree of the polynomial ring R,;

e w, theweight of the private polynomialsin key generation;

. t, the weight of the private polynomialsin encryption and encapsulation;
. n', the length of the auxiliary error correcting code; and

. k, the rank of the auxiliary error correction code.

The degree n is chosen to be a prime where the only irreducible factors of X™ + 1 over the field Z, are X + 1 and
X" 14+ X+ 1.

NOTE: Where necessary, aweight function, denoted wt (f), which returns the weight of the input polynomia f,
is used to clarify certain requirements in the algorithm descriptions.

7.3.3 Auxiliary error correction

HQC encodes plaintexts using an auxiliary error correcting code of length n" and rank k that can efficiently correct at
least § errors. The auxiliary code isfixed for each parameter set and forms part of the public parameters for the scheme.

ETSI

40 ETSI TR 103 823 V1.1.1 (2021-09)
The third round submission specifies a concatenated code with a duplicated Reed-Muller code for the internal code, and
a shortened Reed-Solomon code for the external code. Previous versions of HQC used different auxiliary codes.

The function Encode takes a k-hit plaintext asinput and returns the corresponding codeword of length n’. The function
Decode takes a codeword of length n" asinput and returns a candidate k-bit plaintext m'. Decoding will recover the
correct plaintext provided the input contains at most § errors, otherwise it will fail.

NOTE: The description of HQC given in the present clause assumes that the decoding algorithm always returns a
plaintext, evenif it isincorrect.
7.3.4 Auxiliary primitives
HQC makes use of several auxiliary, symmetric primitives:
. G, a512-bit cryptographic hash function;
. H, a512-bit cryptographic hash function;
o KDF, akey derivation function; and
. PRF, a pseudorandom function.

The submission describes how to instantiate G using SHA3-512, and H using SHA-512. It does not give explicit
instantiations for KDF or PRF, but the reference implementation included with the submission uses SHA-512 for KDF
and AES-256 in counter mode for PRF.

7.3.5 Public-key encryption scheme

7.35.1 HQC.PKE.KeyGen
Input: None

Output: Public key pk
Private key sk

1) Sampleauniformly random public element a € R,.
2) Sampleuniformly random s, e, € R, S0 that wt(s,) = wt(ey) = w.
3) Computeb := asy + e; € R,.

The public key ispk == (a, b). The private key is sk := s,.

NOTE 1. The submission suggests that the public key can be compressed by sampling a deterministically using
PRF with a 320-bit seed.

NOTE 2: The submission suggests that the private key can be compressed by sampling s, and e, deterministically
using PRF with a 320-bit seed.

7.3.5.2 HQC.PKE.Enc

Input: Public key pk
Plaintext m (length k bits)
Random seed r (length 512 bits)

Output: Ciphertext ¢
1) Parsethepublic key aspk = (a,b).
2) Samples,,e;, e, € R, deterministically using PRF with the seed r, so that wt(s;) = wt(e;) = wt(e,) = t.

3) Computethe public element ¢, :== as; + e; € R,.

ETSI

41 ETSI TR 103 823 V1.1.1 (2021-09)

4) Computec, := bs; + e, + Encode(m) € R,.
The ciphertextis ¢ :== (¢, ¢1)-

NOTE: Theplaintext m isencoded as a vector of length n’ where n’ < n. The submission suggests compressing
the second component ¢; of the ciphertext slightly by dropping the final n — n’ entries.

7.3.5.3 HQC.PKE.Dec

[nput: Private key sk
Ciphertext ¢

Output: Plaintext m (length k bits)
1) Parsethe private key as sk = s, and the ciphertext as ¢ = (cy, ¢;).-
2) Computev :=c; — cySy € R,.

3) Recover the plaintext by computing m := Decode(v).
7.3.6 Key encapsulation mechanism

7.3.6.1 HQC.KEM.KeyGen
Thisisidentical to HQC.PKE.KeyGen.

7.3.6.2 HQC.KEM.Enc
Input: Public key pk

Output: Ciphertext ct
Session key K (length 512 hits)

1) Sample auniformly random k-bit plaintext m.

2) Encrypt (cy, ¢1) == HQC.PKE.Enc(pk, m, G(m)).
3) Computec, = H(m).

4) Derivethe session key K := KDF(m |l ¢y Il ¢4).

The ciphertext is ¢ :== (cy, ¢1, ¢;). Thesession key isK.

7.3.6.3 HQC.KEM.Dec

[nput: Ciphertext ¢
Private key sk

Output: Session key K (length 512 bits),
orl

1) Parsethe ciphertext asc = (cy, ¢q, C3)-

2) Decryptm' := HQC.PKE.Dec(sk, (cg,¢1))-

3) Reencrypt (¢j, cq) == HQC.PKE.Enc(pk, m', G(m")).

4) Recompute c; = H(m").

5) If (c§,c1,¢3) = (co, €1, C2), then derive the session key K := KDF(m' |l ¢4 |l ¢1).

6) Otherwise, return L.

ETSI

42 ETSI TR 103 823 V1.1.1 (2021-09)

7.3.7 Parameter sets

The HQC submission includes the parameter sets shown in Table 30.

Table 30: Proposed parameters for HQC

Set n w t n' k |Failure probability |Claimed security
hgc-128 |17 669 |66 |75 |17 664 128 2128 Category 1
hgc-192 |35 851 [100 |114 |35 840 |192 2192 Category 3
hgc-256 |57 637 |131 |149 |57 600 256 2256 Category 5

These parameter sets lead to the public key, private key and ciphertext sizes shown in Table 31.

Table 31: HQC public key, private key, and ciphertext sizes

Public key Private key Ciphertext
Set (bytes) (bytes) (%ytes) Comments

hqgc-128 4418 2 209 4481 NOTE 1

hqgc-192 8 964 4482 9 026 NOTE 2

hqc-256 14 410 7 205 14 469 NOTE 3
NOTE 1: The compressed private key is 40 bytes and compressed public key is 2 249 bytes.
NOTE 2: The compressed private key is 40 bytes and compressed public key is 4 522 bytes.
NOTE 3: The compressed private key is 40 bytes and compressed public key is 7 245 bytes.

7.3.8 Security

The security of HQC depends on the difficulty of syndrome decoding in random quasi-cyclic codes. The best attacks
involve information set decoding, and target multiple codewords or errors of the same weight obtained from the quasi-
cyclic structure; see Annex C for more information. The HQC submission does not include explicit security costings, so
Table 32 shows estimated costs for each parameter set for the classical security of key and message recovery, derived
using the methodol ogy described in Annex C.

Table 32: Classical security estimates for HQC

Set Key recovery |Message recovery
(bits) (bits)
hqc-128 132 132
hqc-192 200 200
hqc-256 262 261

The provable security of HQC depends on variants of the decisional quasi-cyclic syndrome decoding problem. Public
keys of the form (a, b) can be distinguished from random as the parity of b is completely determined by the parity of a
and the weight w of the private key elements. Further, the component ¢, of the ciphertext does not correspond to afull
syndrome as the final entries are dropped. Conseguently, HQC.PKE is CPA-secure in the ROM based on the
computational hardness of the decisional quasi-cyclic syndrome decoding problem with fixed parity and erasures.

The submission claims that the conversion of the CPA-secure HQC.PKE into the CCA-secure HQC.KEM istight, but
only holdsin the ROM. The choice of auxiliary code allows atheoretical upper bound for the decoding failure rate to be
calculated. Consequently, the submission claims that HQC.KEM is CCA-secure for the proposed parameter sets.

ETSI

43 ETSI TR 103 823 V1.1.1 (2021-09)

7.3.9 Performance

The HQC submission includes performance figures for an AV X 2-optimized implementation run on a 3,6 GHz Intel®
Core™ i7-7820X processor. The performance figures for each parameter set are shown in Table 33.

Table 33: HQC performance figures

s HQC.KEM.KeyGen HQC.KEM.Enc HQC.KEM.Dec
et

(cycles) (cycles) (cycles)
hqc-128 136 000 220 000 384 000
hqc-192 305 000 501 000 821 000
hqc-256 545 000 918 000 1538 000

7.4 NTRU Prime

7.4.1 Overview

Let R denote the polynomia ring (Z[X])/(X™ — X — 1), and R, denote the polynomial ring (Z4[X])/(X™ — X — 1),
wheren and g are primes chosen so that X™ — X — 1 isirreducible modulo q. This means that R, is a prime degree
extension field of F,.

The NTRU Prime submission describes two related but separate schemes:

. Streamlined NTRU Prime, which consists of a CPA-secure PKE scheme based on NTRU with rounding over
thefield R, that is converted into a CCA-secure KEM; and

. NTRU LPRime, which consists of a CPA-secure PKE scheme based on Ring Learning With Rounding
(RLWR) over thefield R, that is converted into a CCA-secure KEM.

Both Streamlined NTRU Prime and NTRU LPRime use a variant of the Fujisaki-Okamoto transform from [i.16] that
includes an additional confirmation hash.

The submission makesit clear that Streamlined NTRU Prime and NTRU LPRime are defined as CCA-secure KEMs
only, and that the underlying PKE schemes are building blocks that are not intended as separate submissions to the
NIST standardization process.

NOTE: Streamlined NTRU Primeis abbreviated to SNTRUP, and NTRU LPRimeis abbreviated to NTRULPR.

7.4.2 Parameters
The main parameters for NTRU Prime are:

e n,thedegree of the polynomial ring R,;

. g, the modulus of the polynomial ring R,;; and

. w, the weight of the ternary polynomialsin key generation and encryption.
A polynomial in R issaid to be ternary if its coefficients all liein {—1,0,1}.

The modulus g and degree n are primes chosen so that X™ — X — 1 isirreducible modulo q. The weight w is chosen to
ensure that NTRU Prime is not susceptible to decryption failures.

7.4.3 Auxiliary primitives
NTRU Prime makes use of the following auxiliary, symmetric primitives:
. H, a256-bit cryptographic hash function;

. KDF, akey derivation function; and

ETSI

44 ETSI TR 103 823 V1.1.1 (2021-09)

. XOF, an extendable output function.

The submission describes how to use SHA-2 and AES to instantiate these primitives, as shown in Table 34.

Table 34: Auxiliary symmetric primitives for NTRU Prime

Primitive Instantiation
H SHA-512, output truncated to 256 bits
KDF SHA-512, output truncated to 256 bits
XOF AES-256 in counter mode

Streamlined NTRU Prime and NTRU LPRime use a function Round: R, — 3R which converts each coefficient of the
input polynomial to {—(q — 1)/2, ..., (g — 1)/2} and then rounds it to the nearest multiple of 3.

NTRU LPRime uses functions Compress: R, — R;¢ and Decompress: R;s — R, related to modulus switching in
order to reduce the size of the ciphertext.

NTRU LPRime also uses a hash function G: {0,1}?5¢ — R that maps 256-bit values to ternary polynomialsin R of
weight w. Thisis built from H and XOF.

7.4.4 Streamlined NTRU Prime public-key encryption scheme

7441 SNTRUP.PKE.KeyGen
Input: None

Output: Public key pk
Private key sk

1) Sampleauniformly random ternary polynomial g € R that isinvertible modulo 3.
2) Compute g', the inverse of g modulo 3.
3) Sampleauniformly random ternary polynomial f € R of weight w.
4) Computeh := g/3f inR,.
The public key ispk := h. The privatekey issk = (f, g").

NOTE: Thepolynomia f in step 4) is anon-zero element of thefield R, so will always be invertible.

7.4.4.2 SNTRUP.PKE.Enc

Input: Public key pk
Plaintext m (aternary polynomial in R of weight w)

Output: Ciphertext ¢

1) Parsethepublic key aspk = h.
2) Compute hminR,.

3) Compute ¢ :== Round(hm).

The ciphertext isc.

ETSI

45 ETSI TR 103 823 V1.1.1 (2021-09)

7.4.4.3 SNTRUP.PKE.Dec

[nput: Private key sk
Ciphertext ¢

Output: Plaintext m (aternary polynomial in R of weight w)

1) Parsetheprivatekey assk = (f,g").

2) Computee := 3fcinR, and convert to apolynomial in R with coefficientsin {—(q — 1)/2, ..., (q — 1)/2}.
3) Computem :=eg’' mod 3.

4) Convert m to aternary polynomial in R.
7.4.5 Streamlined NTRU Prime key encapsulation mechanism

7.45.1 SNTRUP.KEM.KeyGen
Input: None

Output: Public key pk
Augmented private key sk

1) Sample auniformly random ternary polynomial z € R of weight w.
2) Cal SNTRUP.PKE.KeyGen() to generate a public key pk and corresponding private key sk'.

The public key ispk. The augmented private key is sk := (sk’, pk, z).

7.45.2 SNTRUP.KEM.Enc
Input: Public key pk

Output: Ciphertext ¢
Sessionkey K (length 256 hits)

1) Sampleauniformly random ternary polynomial m € R of weight w.
2) Encrypt ¢, := SNTRUP.PKE.Enc(pk, m).

3) Computec, := H(m | pk).

4) Derivethesessionkey K :=KDF(1 I m Il ¢ Il ¢1).

The ciphertext is ¢ := (cg, ¢;). The session key isK.

7.45.3 SNTRUP.KEM.Dec

Input: Ciphertext ¢
Augmented private key sk

Output: Sessionkey K (length 256 bits)

1) Parsetheciphertext asc = (¢, ¢;) and the private key as sk = (sk’, pk, z).
2) Decryptm’ :== SNTRUP.PKE.Dec(sk’, ¢,).

3) Re-encrypt ¢; := SNTRUP.PKE.Enc(pk,m").

4) Computec; = H(m' |l pk).

5 If ¢ =coandc; = cq, thenderivethe sessionkey K := KDF(1 | m' |l ¢g Il ¢y).

ETSI

46 ETSI TR 103 823 V1.1.1 (2021-09)
6) Otherwise, derivearandomkey K := KDF(O Il z Il ¢ Il ¢1).
7.4.6 NTRU LPRime public-key encryption scheme

7.46.1 NTRULPR.PKE.KeyGen
Input: None

Output: Public key pk
Private key sk

1) Sampleauniformly random 256-bit seed d.

2) Expand the seed d using XOF to produce the public polynomia a € R,.
3) Sampleauniformly random ternary polynomial s, € R of weight w.

4) Computeas, inR,.

5) Computet := Round(asg).

The public key ispk := (t,d). The private key is sk = s,.

7.4.6.2 NTRULPR.PKE.Enc

Input: Public key pk
Plaintext m (Iength 256 bits)

Output: Ciphertext ¢

1) Parsethe public key aspk = (t, d).

2) Expand the seed d using XOF to produce the public polynomia a € R,.

3) Computes, := G(m).

4) Computeas, inR,.

5) Compute the public polynomial u := Round(as;).

6) Computev :=ts; inR,.

7) Encode the plaintext as an element u € R, by setting each coefficient y; tom;(q — 1)/2.
8) Computev :=ts; + u € R,,.

9) Compute v’ := Compress(v).

The ciphertext isc == (u,v").

7.4.6.3 NTRULPR.PKE.Dec

[nput: Private key sk
Ciphertext ¢

Output: Plaintext m (length 256 bits)

1) Parsethe private key as sk = s, and the ciphertext asc¢ = (u, v').
2) Compute v := Decompress(v').

3) Computeus, € R,.

4) Vieweachv; — (usy); + 4w + 1 € Z, asanintegerin{—(q — 1)/2,...,(q — 1)/2}.

ETSI

47 ETSI TR 103 823 V1.1.1 (2021-09)
5) If v; isnegative, then set m; = 1, otherwise set m; := 0.
7.4.7 NTRU LPRime key encapsulation mechanism

7.4.7.1 NTRULPR.KEM.KeyGen
Input: None

Output: Public key pk
Augmented private key sk

1) Sampleauniformly random 256-bit value z.
2) Cal NTRULPR.PKE.KeyGen() to generate a public key pk and corresponding private key sk'.

The public key is pk. The augmented private key is sk := (sk', pk, z).

7.4.7.2 NTRULPR.KEM.Enc
Input: Public key pk

Output: Ciphertext ¢
Sessionkey K (length 256 bits)

1) Sampleauniformly random 256-bit message m.

2) Encrypt ¢, ;== NTRULPR.PKE.Enc(pk, m).

3) Computec; := H(m |l pk).

4) Derivethesessionkey K :=KDF(1 I m Il ¢ Il ¢1).

The ciphertext is ¢ :== (cy, ¢1). Thesession key isK.

7.4.7.3 NTRULPR.KEM.Dec

[nput: Ciphertext ¢
Augmented private key sk

Output: Sessionkey K (length 256 bits)

1) Parsetheciphertext asc = (¢, ¢;) and the private key as sk = (sk', pk, z).

2) Decrypt m’ := NTRULPR.PKE.Dec(sk’, c).

3) Re-encrypt ¢ := NTRULPR.PKE.Enc(pk, m').

4) Computec; = H(m' || pk).

5 If ¢y =coandc; = ¢y, then derive the sessionkey K :== KDF(1 Il m" |l ¢y Il ¢;)-

6) Otherwise, derivearandomkey K := KDF(O [l z Il ¢ Il ¢1).

7.4.8 Parameter sets

The NTRU Prime submission includes the parameter sets for Streamlined NTRU Prime shown in Table 35 and for
NTRU LPRime shown in Table 36.

ETSI

48 ETSI TR 103 823 V1.1.1 (2021-09)

Table 35: Proposed parameters for Streamlined NTRU Prime

Set n q w Claimed security
sntrup653 653 4621 288 Category 1
sntrup761 761 4591 286 Category 2
sntrup857 857 5167 322 Category 3
sntrup953 953 6 343 396 Category 4
sntrup1013 1013 7177 448 Category 4
sntrup1277 1277 7879 492 Category 5

Table 36: Proposed parameters for NTRU LPRime

Set n q w Claimed security
ntrulpr653 653 4621 252 Category 1
ntrulpr761 761 4591 250 Category 2
ntrulpr857 857 5167 281 Category 3
ntrulpro53 953 6343 345 Category 4
ntrulpr1013 1013 7177 392 Category 4
ntrulpr1277 1277 7879 429 Category 5

These parameter sets lead to the public key, private key, and ciphertext sizes for Streamlined NTRU Prime shown in
Table 37 and for NTRU LPRime shown in Table 38.

Table 37: Streamlined NTRU Prime public key, private key, and ciphertext sizes

Set Public Key Private Key Ciphertext
(bytes) (bytes) (bytes)
sntrup653 994 1518 897
sntrup761 1158 1763 1039
sntrup857 1322 1999 1184
sntrup953 1505 2 254 1349
sntrup1013 1623 2417 1455
sntrup1277 2 067 3059 1847

Table 38: NTRU LPRime public key, private key, and ciphertext sizes

Set Public Key Private Key Ciphertext

(bytes) (bytes) (bytes)
ntrulpr653 897 1125 1025
ntrulpr761 1039 1294 1167
ntrulpr857 1184 1463 1312
ntrulpr953 1349 1652 1477
ntrulpr1013 1455 1773 1583
ntrulpr1277 1847 2231 1975

7.4.9 Security

The main attacks considered are the hybrid and meet-in-the-middle attacks mentioned in Annex D. The security of
NTRU Prime depends on the difficulty of finding lattice vectors that are short or close to a particular target vector in
certain algebraically structured lattices. However, because it is not known how to exploit this algebraic structure, the
attacks are costed using the general-purpose core-SV P methodol ogy described in Annex D. The costs for each
parameter set for Streamlined NTRU Prime are shown in Table 39. The costs for each parameter set for NTRU LPRime
are shown in Table 40.

ETSI

49 ETSI TR 103 823 V1.1.1 (2021-09)

Table 39: Core-SVP costings for Streamlined NTRU Prime (hybrid attack)

Set Classical_ core-SVP Quantu m core-SVP
(bits) (bits)
sntrup653 129 117
sntrup761 153 139
sntrup857 175 159
sntrup953 196 178
sntrup1013 209 190
sntrup1277 270 245

Table 40: Core-SVP costings for NTRU LPRime (hybrid attack)

Set Classical core-SVP Quantum core-SVP

(bits) (bits)
ntrulpr653 130 118
ntrulpr761 155 140
ntrulpr857 176 160
ntrulpr953 197 178
ntrulpr1013 210 190
ntrulprl277 271 245

7.4.10 Performance

The NTRU Prime submission includes performance figures for optimized implementations of Streamlined NTRU Prime
and NTRU LPRime run on asingle core of a3,5 GHz Intel® Xeon® E3-1275 processor. Table 41 shows the
performance figures for Streamlined NTRU Prime with the sntrup761 parameter set. Table 42 shows the performance
figures for NTRU LPRime with the ntrulpr761 parameter set.

Table 41: Streamlined NTRU Prime performance figures

NTRULPR.KEM.Keyge |[NTRULPR.KEM.En |NTRULPR.KEM.De
Set n c c
(cycles) (cycles) (cycles)
sntrup761 809 348 48 780 59 288
Table 42: NTRU LPRime performance figures

Set SNTRUP.KEM.Keygen |SNTRUP.KEM.Enc |SNTRUP.KEM.Dec

(cycles) (cycles) (cycles)

ntrulpr761 44 540 72 388 86 976

7.5.1 Overview

SIKE consists of a CPA-secure PKE scheme that is converted into a CCA-secure KEM using a variant of the
Fujisaki-Okamoto transform from [i.16]. The security of SIKE is based on the Supersingular 1sogeny Diffie-Hellman
(SIDH) problem.

Let E, be asupersingular elliptic curve over F .2 for aprime p of theformp = 2°23% — 1 where:
. {P,,Q,} isapair of points of order 2°2 on E, that generate the 2¢2-torsion subgroup; and

. {P;,Q3} isapair of points of order 3%3 on E, that generate the 3¢3-torsion subgroup.

ETSI

50 ETSI TR 103 823 V1.1.1 (2021-09)

Eacha € {0, ..., 2°2 — 1} gives a degree 2°2 isogeny ¢,: E, — E, withkernel P, + [a]Q, andeach b € {0, ..., 3% — 1}

gives adegree 3% isogeny ¢s: E, — E5 with kernel P; + [b]Q5. The corresponding isogenies ¢5: E; — E with kernel
¢3(P,) + [alos(Q,) and ¢3: E, — E' with kernel ¢, (P;) + [b]¢,(Q5) produce isomorphic curves E = E'. This
means that their j-invariants will be the same. The SIDH problem isto recover the j-invariant for E given the curves
E,, E,, E5, the points P,, Q,, P;, Q3 on E,, the points ¢, (P3), ¢,(Q3) on E,, and the points ¢5 (P,), ¢3(Q,) on E;.
7.5.2 Parameters
The main parameters for SIKE are:

. e, and e5, positive integers specifying aprimep = 2%23% — 1; and

e ¢, thelength of messages and session keysin bits.

The parameters for SIKE also include a starting curve E,, over F,z, apair of points {P,, @} of order 2°z on E,, and a
pair of points{P;, Q;} of order 3¢ on E,. The starting curve is chosen to be:

Ey:y? =x3+6x%+x

for al SIKE parameter sets.

7.5.3 Auxiliary primitives

SIKE makes use of several auxiliary, symmetric primitives:
e H, an¢-bit cryptographic hash function;
o KDF, akey derivation function; and
. XOF, an extendable output function.

The submission describes how to use SHAKE-256 to instantiate these primitives.
7.5.4 Public-key encryption scheme

7541 SIKE.PKE.KeyGen
Input: None

Output: Public key pk
Private key sk

1) Sampleauniformly random value x in the range {0, ..., 2% — 1} where k = |log, 3%3].
2) Let¢;: E, — E; betheisogeny corresponding to the point P; + [x] @5 on the curve Ej,.
3) Computethe points P, :== ¢5(P,) and Q; := ¢5(Q,) onthe curve E;.
The public key ispk := (E5, P;, Q). The private key is sk = x.
NOTE 1: The SIKE submission represents the public key by the x-coordinates of the points P;, Q; and P; — Q5.
NOTE 2: The submission also includes a compressed version of SIKE that reduces the size of the public key using
techniques from [i.29] and [i.30].
7.5.4.2 SIKE.PKE.Enc

Input: Public key pk
Plaintext m (length # bits)
Random seed r (length e, bits)

Output: Ciphertext ¢

ETSI

1)
2)
3)
4)
5)
6)
7)
8)

51 ETSI TR 103 823 V1.1.1 (2021-09)

Parse the public key aspk = (E;, P;,Q3).

Let ¢,: E, — E, betheisogeny corresponding to the point P, + [r]@, onthe curve E,.
Compute the points P; == ¢,(P;) and Q3 := ¢,(Q3) onthecurve E,.

Set ¢y = (E3, P3,Q3).

Let ¢5: E; — E betheisogeny corresponding to the point P, + [r]Q3 on the curve Es.
Compute the j-invariant j of the curve E.

Compute h :== H(j).

Computec; = h @ m.

The ciphertext is ¢ :== (¢, ¢1)-

NOTE 1: The SIKE submission represents the first component ¢, of the ciphertext by the x-coordinates of the

points P;, Q3 and P; — Q3.

NOTE 2: The submission also includes a compressed version of SIKE that reduces the size of the ciphertext using

7543

techniques from [i.29] and [i.30].

SIKE.PKE.Dec

Input: Private key sk

Ciphertext ¢

Output: Plaintext m (length ¢ bits)

1) Parsetheprivate key as sk = x and the ciphertext asc = (¢, ¢1)-
2) Par%CO = (Ez,Pé,Qé).
3) Let¢s:E, — E'betheisogeny corresponding to the point P; + [x]Q5 on the curve E,.
4) Compute the j-invariant j of the curve E'.
5) Compute h := H(j).
6) Recover the plaintext by computingm == h @ c;.
7.5.5 Key encapsulation mechanism
7.55.1 SIKE.KEM.KeyGen
Input: None

Output: Public key pk

1)
2)
The publ

7.55.2

Augmented private key sk
Sample auniformly random #-bit value z.
Call SIKE.PKE.KeyGen() to generate a public key pk and corresponding private key sk'.

ic key ispk. The augmented private key is sk := (sk', pk, z).

SIKE.KEM.Enc

Input: Public key pk

Output: Ciphertext ¢

Sessionkey K (length # bits)

ETSI

52 ETSI TR 103 823 V1.1.1 (2021-09)

1) Sample auniformly random £-bit message m.

2) Derivean e,-bit value r from m and pk using X OF.
3) Encrypt ¢ := SIKE.PKE.Enc(pk, m,r).

4) Derivethe session key K := KDF(m || ¢).

The ciphertext isc. The sessionkey isK.

7.55.3 SIKE.KEM.Dec

Input: Augmented private key sk
Ciphertext ¢

Output: Sessionkey K (length ¢ bits)

1) Parsetheprivate key assk = (sk’,pk, z).

2) Decryptm’ := SIKE.PKE.Dec(sk/, c).

3) Derivean e,-bit value r’' from m’ and pk using XOF.

4) Re-encrypt ¢’ := SIKE.PKE.Enc(pk, m',7").

5) If ¢’ = c then derive the session key K := KDF(m' || ¢).
6) Otherwise, derive arandomkey K := KDF(z || ¢).

NOTE: The SIKE submission does not perform afull re-encryption check. Instead, it checks that the first
component ¢, of the ciphertext recomputed in steps 1) to 4) of SIKE.PKE.Enc matches the first
component ¢, of the provided ciphertext c. Thisis sufficient to guarantee that the full ciphertexts ¢’ and ¢
will match.

7.5.6 Parameter sets

The SIKE submission includes the parameter sets shown in Table 43.

Table 43: Proposed parameters for SIKE

Set e, e; £ Claimed security
SIKEp434 216 137 128 Category 1
SIKEp503 250 159 192 Category 2
SIKEp610 305 192 192 Category 3
SIKEp751 372 239 256 Category 5

Each parameter set is given in aregular form and in a compressed form. These parameter sets lead to the public key,
private key, and ciphertext sizes as shown in Table 44.

Table 44: SIKE public key, private key, and ciphertext sizes

s | verson [P e Y [Pme ey [Oprere
SIKEp34 | s T o1 | 380 | 335
SIKERS03 | T 528 | 47 | 780
SIKERS10 | T T 978 | as1 | 35
SIKEPTSL [T T 595 | o0 | 410

ETSI

53 ETSI TR 103 823 V1.1.1 (2021-09)

7.5.7

The security of SIKE depends on the difficulty of recovering a private isogeny. Generic meet-in-the-middle attacks
require 0 (p'/*) work and 0(p*/*) memory. The SIKE submission argues that the most relevant classical attack isthe
parallel collision-finding agorithm of van Oorschot and Wiener. Table 45 gives estimates for the classical cost of
parallel collision-finding (in gates) when the memory is restricted to 2°¢ bits.

Security

Table 45: Classical security estimates for SIKE

Set Classical gates
SIKEp434 2142
SIKEp503 2169
SIKEp610 2209
SIKEp751 2263

Tani's quantum claw-finding algorithm recovers the private isogenies with a query complexity of 0(g*/®). However,
the SIKE submission argues that classical parallel collision-finding requires fewer resources than quantum claw-finding
when the circuit depth is restricted and quantum memory costs are taken into account. Table 46 gives estimates for the
guantum cost of claw-finding with a maximum circuit depth of 264 or 2%,

Table 46: Quantum security estimates for SIKE

Quantum gates
Set Maximum circuit Maximum circuit
depth of 264 depth of 2%
SIKEp434 2175 2143
SIKEp503 2210 2178
SIKEp610 2264 2232
SIKEp751 2336 2304

The SIKE submission claims that SIKE.PKE is CPA-secure in the ROM based on the computational hardness of the
SIDH problem, and that SIKE.KEM is CCA-secure in the ROM based on the CPA-security of SIKE.PKE. The
submission notes that SIKE.PKE is CPA-secure in the standard model based on the hardness of a decisional variant of
the SIDH problem, though this does not extend to CCA security in the standard model for SIKE.KEM.

7.5.8

The SIK E submission includes performance figures for an optimized implementation run on a 3,4 GHz Intel® Core™
i7-6700 processor. The performance figures for each parameter set are shownin Table 47.

Performance

Table 47: SIKE performance figures

Set version SIKE.KEM.KeyGen |SIKE.KEM.Enc [SIKE.KEM.Dec
(cycles) (cycles) (cycles)
SIKEp434 Regular 5927 000 9 681 000 10 343 000
Compressed 10 158 000 15 120 000 11 077 000
SIKEp503 Regular 8 243 000 13 544 000 14 415 000
Compressed 14 452 000 21 190 000 15 733 000
SIKEp610 Regular 14 890 000 27 254 000 27 445 000
Compressed 26 360 000 37 470 000 29 216 000
SIKEp751 Regular 25197 000 40 703 000 43 851 000
Compressed 40 935 000 63 254 000 46 606 000

ETSI

54 ETSI TR 103 823 V1.1.1 (2021-09)

Annex A:
Proofs of security

A.l Introduction

Proofs of security, also referred to as security reductions, usually involve showing that the ability of an adversary to
break the security of a cryptographic scheme would necessarily imply their ability to solve arelated problem that is
believed to be computationally hard. Proofs of security can provide reassurance that cryptographic schemes are secure,
but they require careful interpretation.

A.2 Security models

To construct a proof of security it is necessary to specify what it means for the scheme of interest to be secure (and
hence what it would mean to break that scheme) and the values and computational resources assumed to be available to
an adversary. Examples of definitions of security include CPA and CCA security, as described in Annex B. The
definitions for PKE schemes are subtly different to the definitions for KEMs, and indeed to the definitions for
symmetric encryption schemes and modes of operation.

A.3 Computational resources

With respect to computational resources, it is expected than an adversary with access to a quantum computer will be
able to efficiently perform operations that are not available to an adversary that only has access to classical computers.
To model such an adversary it isimportant to account for properties of quantum computation such as the no-cloning
theorem; consequently, it is often necessary to construct different proofs for different models of computation. Proofs of
security usually allow adversaries to make educated guesses, so classical adversaries are restricted to probabilistic
polynomial-time algorithms, and quantum adversaries are restricted to quantum polynomial-time algorithms.

Proofs of security are usually quantified with respect to a security parameter, and usually involve asymptotic results.
More specifically, proofs of security are usually constructed to hold for large enough security parameters, which can
mean they do not hold for small parameters. Because asymptotic results tend to be non-constructive, it can be difficult
to determine how large the security parameter needs to be for a proof to hold, and it can be difficult to interpret what a
proof of security meansif it only holds for parameters that are significantly larger than those used in practice.

A.4 Tightness

Using the terminology of complexity theory, a proof of security consists of areduction from atarget problem to the
problem of breaking the cryptosystem. This usually involves constructing an algorithm that uses an oracle that breaks
the cryptographic scheme as a subroutine to solve the target problem. The goal is to show that because the target
problem is computationally hard, it cannot be possible to instantiate the oracle with an efficient algorithm, and hence
that the cryptographic scheme is secure.

The efficiency and effectiveness of the reduction isimportant when interpreting a proof of security. If the algorithm that
uses the oracle has a similar running time and probability of success to the oracle, the proof is said to be tight. If the
algorithm requires significantly more time to run than the oracle, or has a significantly lower probability of success, or
both, the proof is said to have atightness gap. A proof with alarge tightness gap tells us relatively little about the
security of the cryptographic scheme of interest; depending on the size of the gap, in some casesit can be possible to
attack the scheme without solving the related hard problem.

ETSI

55 ETSI TR 103 823 V1.1.1 (2021-09)

A.5 Worst-case to average-case reductions

It isalso important to consider what assumptions are made about the intractability of the target problem. A security
proof that assumes that the target problem is hard on average provides a weaker result than a proof that assumes the
target problem is hard only in the worst case. A security proof that a cryptosystem is hard to attack on average, provided
the target problem is computationally hard in the worst case, is referred to as a worst-case to average-case reduction.

A.6 Random oracles

To construct some proofs of security it is necessary to make assumptions about or use idealized versions of certain
cryptographic primitives, such as ciphers and hash functions; this can mean the proof does not apply to a concrete
implementation. Proofs of security that avoid such assumptions are said to be constructed in the standard model.

In the Random Oracle Model (ROM) hash functions are modelled as ideal entities, referred to as random oracles, which
respond to new queries with responses selected uniformly at random from the output domain, and respond to previously
seen queries with whatever answer was given the first time the query was received.

Inthe ROM it is assumed that adversaries interact classically with random oracles, but in the Quantum Random Oracle
Model (QROM) it is assumed that adversaries can query a random oracle in a quantum superposition of

states. Although the QROM affords an adversary more computational power, it can be difficult to compare proofsin the
ROM to proofsin the QROM, particularly if it is possible to construct atight proof in the ROM but not the QROM.

ETSI

56 ETSI TR 103 823 V1.1.1 (2021-09)

Annex B:
Security properties

B.1

Introduction

The two main security goals that are relevant for PKE and KEMs are indistinguishability under chosen-plaintext, and
indistinguishability under chosen-ciphertext. Both security goals are usually modelled as games that take place between
an attacker and a challenger; the games are dlightly different for public-key encryption than for key encapsulation.

B.2

Public-key encryption

The two security definitions for PKE schemes are:

Chosen-Plaintext Attack (CPA) security for PKE. The challenger generates a key pair for some security
parameter and provides the public values to the attacker. The attacker can perform a polynomial (in the size of
the security parameter) number of operations, then submit a pair of plaintext messages of its choice to the
challenger. The challenger selects one of the messages uniformly at random, encrypts it using fresh random
values and returns the resulting ciphertext to the attacker. The goal of the attacker is to determine which of the
two messages the challenger encrypted. A PKE schemeis said to be indistinguishable under chosen-plaintext
attack, or CPA-secure, if every probabilistic polynomial time attacker has only a negligible (in the size of the
security parameter) advantage over random guessing.

Chosen-Ciphertext Attack (CCA) security for PKE. The CCA game for public-key encryption is the same
asthe CPA game described above, except the attacker is given access to a decryption oracle that it can query
with values of its choice. In the basic version, often referred to as CCA1 security, the attacker is only allowed
to use the decryption oracle prior to submitting its choice of messages to the challenger. In the adaptive case,
often referred to as CCA2 security, the attacker is allowed to use the decryption oracle before and after it
submits its choice of messages to the challenger, but it is not allowed to query the decryption oracle with the
ciphertext received from the challenger.

B.3

Key encapsulation

The two security definitions for KEMs are:

Chosen-Plaintext Attack (CPA) security for KEMs. The challenger generates a key pair for some security
parameter and provides the public values to the attacker. The attacker can perform a polynomial (in the size of
the security parameter) number of operations, then request a challenge from the challenger. The challenger
calls the encapsulation routine, which returns a uniformly random key, K, and a ciphertext, which represents
the encapsulation of K. The challenger provides the attacker with the ciphertext, and either K or a uniformly
random value, K'. The goa of the attacker is to determine whether it has been given K or K'. A KEM is said
to be indistinguishable under chosen-plaintext attack, or CPA-secure, if every (probabilistic) polynomial time
attacker has only a negligible (in the size of the security parameter) advantage over random guessing.

Chosen-Ciphertext Attack (CCA) security for KEMs. The CCA game for key encapsulation is the same as
the CPA game described above, except the attacker is given access to a decapsulation oracle that it can query
with values of its choice. In the basic version, often referred to as CCA1 security, the attacker is only allowed
to use the decapsulation oracle prior to requesting a challenge. In the adaptive case, often referred to as CCA2
security, the attacker is allowed to use the decapsulation oracle before and after it requests a challenge, but it is
not allowed to query the decapsulation oracle with the ciphertext received from the challenger.

ETSI

57 ETSI TR 103 823 V1.1.1 (2021-09)

B.4 One-wayness

One-Wayness against Chosen-Plaintext Attack (OW-CPA) security captures a weaker notion of CPA security for PKE
schemes. The challenger provides the attacker with a ciphertext corresponding to the encryption of a message selected
uniformly at random from the space of al possible messages. The goa of the attacker is to recover the message from
the ciphertext. If a PKE schemeis CPA-secure then it is OW-CPA-secure, but the converse need not be true.

B.5 CPA to CCA transforms

CPA security, including OW-CPA security, is used to model passive attackers, which are usually thought of as third
parties that can observe messages exchanged between the sender and the recipient, who are both assumed to behave
honestly. CCA security is used to model active attackers, such as a malicious sender that constructs malformed
ciphertexts to learn information about the recipient's private key. Consequently, when using a CPA-secure PKE scheme
or KEM in the presence of active attackers, arecipient's private key can only be used securely once.

There are standard techniques available for converting a CPA-secure PKE scheme into a CCA-secure KEM, where
recipients can reuse their private keys even in the presence of active attackers. The most common approach isto use a
variant of the Fujisaki-Okamoto transform [i.15]. This usually involves the sender deriving the randomness required for
encryption from the value to be encrypted; note that this includes the randomness required for the sender to generate an
ephemeral key pair. The recipient can decrypt the received ciphertext, then use the resulting message to attempt to
rederive the randomness and reconstruct the ciphertext to check that the sender followed the protocol honestly.

ETSI

58 ETSI TR 103 823 V1.1.1 (2021-09)

Annex C:
Code-based costing methodology

C.1 Introduction

Message recovery attacks against code-based PKE schemes and KEMs involve finding the codeword that is closest to a
target vector derived from the ciphertext. Key recovery attacks for QC-MDPC schemesinvolve finding non-zero
codewords of moderate weight. Estimates for the costs of both of these attacks usually assume that a variant of
information set decoding is used.

NOTE: Key recovery attacks for schemes that use binary Goppa codes rely on fundamentally different techniques
and are typically much more expensive than message recovery.

C.2 Information set decoding

Information set decoding algorithms take a parity-check matrix H € IF%"_")X" and syndrome s € F3 ¥, and recovers an
error vector e € F} of target weight d suchthat s = He™. The simplest version of information set decoding by Prange
[i.21] performs the following loop:

1) Randomly permute the columns of H and row reduce to echelon form [I,_, H'] whereH' € [an'k)Xk.

2) Apply the same row operationsto s to give avector e’ € F3 %, thensete = [e' 0,] € F} and reverse the
column permutation.

3) Startagainif e doesnot have weight d.

The algorithm succeeds when the column permutation moves al d errorsinto the first n — k positions. More efficient
variants of information set decoding reduce the number of iterations by allowing some of the errors to occur in the final
k positions. However, each iteration is more expensive and can involve significant amounts of memory.

C.3 Asymptotic complexity

The asymptotic complexity of information set decoding depends on the rate of the code and the weight of the codeword
or error being recovered. Table C.1 is adapted from [i.18]. It gives worst-case complexities for full decoding (that is,
finding the closest codeword to an arbitrary vector) in arandom code of length n.

Table C.1: Asymptotic complexity of full decoding for information set decoding variants

Algorithm Work Memory Reference
Lee-Brickell 201208n+o(m) 0(n?) [i.22]
Stern 20,1167n+0(n) 20,0318n+0(n) [|23]
May-Meurer-Thomae 201116n+0(n) 20.0374n+o(n) [i.24]
Becker-Joux-May-Meurer 201019 +o(m) 20,0769nto(m) [i.25]

In code-based PKE schemes and KEMs there is a guarantee on the weight of the codeword or error vector that is much
smaller than needed for full decoding: binary Goppa codes use weight d = 0(n/log(n)) errors and QC-MDPC codes
use weight d = 0(v/n). Canto Torres and Sendrier [i.18] show that decoding an error or recovering a codeword of sub-
linear weight d = o(n) has asymptotic complexity:

Cisp(n, k,d) = 2¢4+0(@

where ¢ = log,(n/(n — k)). Thisisindependent of the variant of information set decoding being used.

ETSI

59 ETSI TR 103 823 V1.1.1 (2021-09)

C.1 Decoding one out of many

If an attacker has a collection of syndromes and only needs to decode one of them, then collision decoding techniques
can be used to reduce the cost of recovery compared to standard information set decoding. Sendrier [i.26] showed that
the cost to decode one out of T syndromesis.

Cisp(n.k,d)
VT

under mild assumptionson T.

Thisisdirectly relevant to code-based schemes that use quasi-cyclic codes. M essage recovery corresponds to decoding
one of the syndromes obtained by taking quasi-cyclic shifts of the ciphertext.

NOTE: Key recovery for schemes that use QC-MDPC codes corresponds to finding one of the quasi-cyclic shifts
of the minimum weight codeword in the dual code. In this case, if there are T quasi-cyclic shifts then the

cost to recover one of themis Cisp(n, k, d)/T; that is, the cost is reduced by afactor of T rather than v/T.

C.4 Quantum information set decoding

Quantum information set decoding agorithms apply Grover search [i.27] or quantum walks[i.28] to classical
information set decoding a gorithms to reduce the number of iterations. The quantum speed-up is similar to the quantum
speed-up for AES key recovery, and has similar trade-offs between maximum circuit depth and total gate count.

C.5 Costing metrics

Thereisalack of consensus among the submissions on which metric to use when costing information set decoding:

. The BIKE submission suggests using the asymptotic complexity from [i.18] and ignoring the sub-exponential
terms. Thisisthe closest analogue to the core-SV P methodol ogy for lattice-based schemes.

e TheHQC submission suggests using the asymptotic complexity from [i.18] but proposes specific expressions
for sub-exponential terms rather than ignoring them.

. The Classic McEliece submission argues that for the variants of information set decoding that involve
significant amounts of memory, the practical cost will be dominated by the memory accesses.

ETSI

60 ETSI TR 103 823 V1.1.1 (2021-09)

Annex D:
Lattice costing methodology

D.1 Introduction

There are two main attacks against lattice-based cryptosystems: the primal attack, and the dual attack. Both attacks
involve finding short vectorsin lattices. Primal attacks are considered for both LWE and NTRU-like schemes, but dual
attacks only apply to LWE schemes. The primal attack constructs a lattice (referred to as the primal lattice) associated
with agiven public key, which contains the corresponding private key as a unique shortest vector. The dual attack
distinguishes public keys from random by finding short vectorsin arelated lattice, referred to as the dual

lattice. Estimates for the costs of both attacks are derived in terms of |attice reduction algorithms.

D.2 Lattice reduction

L attice reduction algorithms convert a given basis for alattice into another basis for the same lattice that consists of
vectors that are shorter and more orthogonal to one another. In general, producing an optimal basis that contains a
shortest non-zero vector in the lattice is NP-hard, but the primal and dual attacks each only require a basis that consists
of short enough vectors.

Block-Korkine-Zolotarev (BKZ) is afamily of algorithms that reduce a basis for any n-dimensional lattice by using an
oracle that solves the exact Shortest Vector Problem (SVP) in asmaller dimension, g. Efficiency is balanced against the
quality of the basis produced by varying 8, which isreferred to as the block size, and using different SVP oracles. The
larger the block size the better the basis returned, in the sense that it will consist of shorter vectors, but at the cost of
more computation: clearly if § = n the SVP oracle computes a shortest nonzero vector in the full n-dimensional lattice.
This trade-off is used to determine how to parameterize lattice-based cryptosystems so that the quality of the basis
required to carry out an attack is prohibitively expensive.

D.3 Enumeration and sieving

There are two main approaches to instantiating the SV P oracle when using BKZ: enumeration, and sieving.
Enumeration algorithms run in super-exponential time but require relatively little memory. Sieving algorithmsrunin
exponential time, but also require exponential memory; however, current approaches to costing tend to focus on running
time by assuming (optimistically) that memory and memory accesses are free. In practice, enumeration algorithms are
usually more efficient than sieving algorithms for small dimensional lattices, with a cross-over at around dimension

80. Consequently, it is usually assumed that sieving algorithms are more efficient (in terms of running time) than
enumeration algorithms when considering the security of lattice-based cryptosystems.

The heuristic complexity of the best sieving algorithms is approximately 222928+0(8) jn the classical model, and
20.2656+0(B) jn the quantum model, which makes use of Grover's search algorithm. The sub-exponential factors are
usually ignored to give respective costs of 2%2928 and 20265 Despite the dlightly better bound in the quantum model,
it isnot clear whether quantum computation will lead to improved running timesin practice [i.20].

D.4 Core-SVP

I mprovements continue to be made in terms of amortizing the cost of calling the SV P oracle when running BKZ.
Consequently, the core-SV P methodology makes the simplifying assumption that just asingle call is made. For
example, for KYBER512 the required block size for the primal attack is estimated to be 403. Therefore, KY BER512
has a classical core-SVP cost of approximately 118 bits, and a quantum core-SVP cost of approximately 107 bits.

ETSI

61 ETSI TR 103 823 V1.1.1 (2021-09)

D.5 Alternative metrics

The core-SV P methodology provides a simple but conservative approach to costing attacks against |attice-based
cryptosystems. An aternative metric isto consider the number of gates required to implement an attack, but this
approach is aso not well understood. For some schemesit is possible to combine lattice reduction techniques with
meet-in-the-middle ideas to produce hybrid attacks that are more efficient than just relying on lattice reduction;
however, thisisarelatively new area of research. Consequently, understanding how to produce more accurate costings
of attacks against lattice-based cryptosystems remains an important and active area of research.

ETSI

62

ETSI TR 103 823 V1.1.1 (2021-09)

History

Document history

V111

September 2021

Publication

ETSI

	Intellectual Property Rights
	Foreword
	Modal verbs terminology
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms, symbols and abbreviations
	3.1 Terms
	3.2 Symbols
	3.3 Abbreviations

	4 Introduction
	5 Background
	5.1 Terminology
	5.2 Families of post-quantum algorithms
	5.3 Security categories
	5.4 Security properties
	5.5 Finalists and alternate candidates at a glance

	6 Finalists
	6.1 Classic McEliece
	6.1.1 Overview
	6.1.2 Parameters
	6.1.3 Auxiliary primitives
	6.1.4 Public-key encryption scheme
	6.1.4.1 McEliece.PKE.KeyGen
	6.1.4.2 McEliece.PKE.Enc
	6.1.4.3 McEliece.PKE.Dec

	6.1.5 Key encapsulation mechanism
	6.1.5.1 McEliece.KEM.KeyGen
	6.1.5.2 McEliece.KEM.Enc
	6.1.5.3 McEliece.KEM.Dec

	6.1.6 Parameter sets
	6.1.7 Security
	6.1.8 Performance

	6.2 KYBER
	6.2.1 Overview
	6.2.2 Parameters
	6.2.3 Auxiliary primitives
	6.2.4 Public-key encryption scheme
	6.2.4.1 KYBER.PKE.KeyGen
	6.2.4.2 KYBER.PKE.Enc
	6.2.4.3 KYBER.PKE.Dec

	6.2.5 Key encapsulation mechanism
	6.2.5.1 KYBER.KEM.KeyGen
	6.2.5.2 KYBER.KEM.Enc
	6.2.5.3 KYBER.KEM.Dec

	6.2.6 Parameter sets
	6.2.7 Security
	6.2.8 Performance

	6.3 NTRU
	6.3.1 Overview
	6.3.2 Parameters
	6.3.3 Auxiliary primitives
	6.3.4 Public-key encryption scheme
	6.3.4.1 NTRU.PKE.KeyGen
	6.3.4.2 NTRU.PKE.Enc
	6.3.4.3 NTRU.PKE.Dec

	6.3.5 Key encapsulation mechanism
	6.3.5.1 NTRU.KEM.KeyGen
	6.3.5.2 NTRU.KEM.Enc
	6.3.5.3 NTRU.KEM.Dec

	6.3.6 Parameter sets
	6.3.7 Security
	6.3.8 Performance

	6.4 SABER
	6.4.1 Overview
	6.4.2 Parameters
	6.4.3 Auxiliary primitives
	6.4.4 Public-key encryption scheme
	6.4.4.1 SABER.PKE.KeyGen
	6.4.4.2 SABER.PKE.Enc
	6.4.4.3 SABER.PKE.Dec

	6.4.5 Key encapsulation mechanism
	6.4.5.1 SABER.KEM.KeyGen
	6.4.5.2 SABER.KEM.Enc
	6.4.5.3 SABER.KEM.Dec

	6.4.6 Parameter sets
	6.4.7 Security
	6.4.8 Performance

	7 Alternate candidates
	7.1 BIKE
	7.1.1 Overview
	7.1.2 Parameters
	7.1.3 Decoding
	7.1.4 Auxiliary primitives
	7.1.5 Public-key encryption scheme
	7.1.5.1 BIKE.PKE.KeyGen
	7.1.5.2 BIKE.PKE.Enc
	7.1.5.3 BIKE.PKE.Dec

	7.1.6 Key encapsulation mechanism
	7.1.6.1 BIKE.KEM.KeyGen
	7.1.6.2 BIKE.KEM.Enc
	7.1.6.3 BIKE.KEM.Dec

	7.1.7 Parameter sets
	7.1.8 Security
	7.1.9 Performance

	7.2 FrodoKEM
	7.2.1 Overview
	7.2.2 Parameters
	7.2.3 Auxiliary primitives
	7.2.4 Public-key encryption scheme
	7.2.4.1 Frodo.PKE.KeyGen
	7.2.4.2 Frodo.PKE.Enc
	7.2.4.3 Frodo.PKE.Dec

	7.2.5 Key encapsulation mechanism
	7.2.5.1 Frodo.KEM.KeyGen
	7.2.5.2 Frodo.KEM.Enc
	7.2.5.3 Frodo.KEM.Dec

	7.2.6 Parameter sets
	7.2.7 Security
	7.2.8 Performance

	7.3 HQC
	7.3.1 Overview
	7.3.2 Parameters
	7.3.3 Auxiliary error correction
	7.3.4 Auxiliary primitives
	7.3.5 Public-key encryption scheme
	7.3.5.1 HQC.PKE.KeyGen
	7.3.5.2 HQC.PKE.Enc
	7.3.5.3 HQC.PKE.Dec

	7.3.6 Key encapsulation mechanism
	7.3.6.1 HQC.KEM.KeyGen
	7.3.6.2 HQC.KEM.Enc
	7.3.6.3 HQC.KEM.Dec

	7.3.7 Parameter sets
	7.3.8 Security
	7.3.9 Performance

	7.4 NTRU Prime
	7.4.1 Overview
	7.4.2 Parameters
	7.4.3 Auxiliary primitives
	7.4.4 Streamlined NTRU Prime public-key encryption scheme
	7.4.4.1 SNTRUP.PKE.KeyGen
	7.4.4.2 SNTRUP.PKE.Enc
	7.4.4.3 SNTRUP.PKE.Dec

	7.4.5 Streamlined NTRU Prime key encapsulation mechanism
	7.4.5.1 SNTRUP.KEM.KeyGen
	7.4.5.2 SNTRUP.KEM.Enc
	7.4.5.3 SNTRUP.KEM.Dec

	7.4.6 NTRU LPRime public-key encryption scheme
	7.4.6.1 NTRULPR.PKE.KeyGen
	7.4.6.2 NTRULPR.PKE.Enc
	7.4.6.3 NTRULPR.PKE.Dec

	7.4.7 NTRU LPRime key encapsulation mechanism
	7.4.7.1 NTRULPR.KEM.KeyGen
	7.4.7.2 NTRULPR.KEM.Enc
	7.4.7.3 NTRULPR.KEM.Dec

	7.4.8 Parameter sets
	7.4.9 Security
	7.4.10 Performance

	7.5 SIKE
	7.5.1 Overview
	7.5.2 Parameters
	7.5.3 Auxiliary primitives
	7.5.4 Public-key encryption scheme
	7.5.4.1 SIKE.PKE.KeyGen
	7.5.4.2 SIKE.PKE.Enc
	7.5.4.3 SIKE.PKE.Dec

	7.5.5 Key encapsulation mechanism
	7.5.5.1 SIKE.KEM.KeyGen
	7.5.5.2 SIKE.KEM.Enc
	7.5.5.3 SIKE.KEM.Dec

	7.5.6 Parameter sets
	7.5.7 Security
	7.5.8 Performance

	Annex A: Proofs of security
	A.1 Introduction
	A.2 Security models
	A.3 Computational resources
	A.4 Tightness
	A.5 Worst-case to average-case reductions
	A.6 Random oracles

	Annex B: Security properties
	B.1 Introduction
	B.2 Public-key encryption
	B.3 Key encapsulation
	B.4 One-wayness
	B.5 CPA to CCA transforms

	Annex C: Code-based costing methodology
	C.1 Introduction
	C.2 Information set decoding
	C.3 Asymptotic complexity
	C.4 Quantum information set decoding
	C.5 Costing metrics

	Annex D: Lattice costing methodology
	D.1 Introduction
	D.2 Lattice reduction
	D.3 Enumeration and sieving
	D.4 Core-SVP
	D.5 Alternative metrics

	History

